Families of varieties of general type:
This volume establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge tracts in mathematics
231 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-521 DE-92 Volltext |
Zusammenfassung: | This volume establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xviii, 471 Seiten). Illustrationen |
ISBN: | 9781009346115 |
DOI: | 10.1017/9781009346115 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048990875 | ||
003 | DE-604 | ||
005 | 20250318 | ||
007 | cr|uuu---uuuuu | ||
008 | 230606s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781009346115 |c Online |9 978-1-00-934611-5 | ||
024 | 7 | |a 10.1017/9781009346115 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009346115 | ||
035 | |a (OCoLC)1381302780 | ||
035 | |a (DE-599)BVBBV048990875 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-521 | ||
082 | 0 | |a 516.35 | |
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Kollár, János |d 1956- |e Verfasser |0 (DE-588)113796277 |4 aut | |
245 | 1 | 0 | |a Families of varieties of general type |c János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xviii, 471 Seiten). |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
336 | |b sti |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 231 | |
500 | |a Includes bibliographical references and index | ||
520 | |a This volume establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space | ||
650 | 4 | |a Moduli theory | |
650 | 4 | |a Algebraic varieties | |
700 | 1 | |a Altmann, Klaus |0 (DE-588)142106410 |4 ctb | |
700 | 1 | |a Kovács, Sándor J. |d 1965- |0 (DE-588)141600675 |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-934610-8 |
830 | 0 | |a Cambridge tracts in mathematics |v 231 |w (DE-604)BV047362617 |9 231 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009346115 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034254221 | |
966 | e | |u https://doi.org/10.1017/9781009346115 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009346115 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009346115 |l DE-521 |p ZDB-20-CBO |q EUV_EK_CAM |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009346115 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1826929487363702784 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kollár, János 1956- |
author2 | Altmann, Klaus Kovács, Sándor J. 1965- |
author2_role | ctb ctb |
author2_variant | k a ka s j k sj sjk |
author_GND | (DE-588)113796277 (DE-588)142106410 (DE-588)141600675 |
author_facet | Kollár, János 1956- Altmann, Klaus Kovács, Sándor J. 1965- |
author_role | aut |
author_sort | Kollár, János 1956- |
author_variant | j k jk |
building | Verbundindex |
bvnumber | BV048990875 |
classification_rvk | SK 660 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009346115 (OCoLC)1381302780 (DE-599)BVBBV048990875 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009346115 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV048990875</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250318</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230606s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009346115</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-934611-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009346115</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009346115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381302780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048990875</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kollár, János</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113796277</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Families of varieties of general type</subfield><subfield code="c">János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 471 Seiten).</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">sti</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">231</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic varieties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Altmann, Klaus</subfield><subfield code="0">(DE-588)142106410</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kovács, Sándor J.</subfield><subfield code="d">1965-</subfield><subfield code="0">(DE-588)141600675</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-934610-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">231</subfield><subfield code="w">(DE-604)BV047362617</subfield><subfield code="9">231</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009346115</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034254221</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009346115</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009346115</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009346115</subfield><subfield code="l">DE-521</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">EUV_EK_CAM</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009346115</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048990875 |
illustrated | Illustrated |
index_date | 2024-07-03T22:07:05Z |
indexdate | 2025-03-18T11:02:09Z |
institution | BVB |
isbn | 9781009346115 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034254221 |
oclc_num | 1381302780 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-521 |
owner_facet | DE-12 DE-92 DE-634 DE-521 |
physical | 1 Online-Ressource (xviii, 471 Seiten). Illustrationen |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO EUV_EK_CAM ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Kollár, János 1956- Verfasser (DE-588)113796277 aut Families of varieties of general type János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács Cambridge Cambridge University Press 2023 1 Online-Ressource (xviii, 471 Seiten). Illustrationen txt rdacontent sti rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 231 Includes bibliographical references and index This volume establishes the moduli theory of stable varieties, giving the optimal approach to understanding families of varieties of general type. Starting from the Deligne-Mumford theory of the moduli of curves and using Mori's program as a main tool, the book develops the techniques necessary for a theory in all dimensions. The main results give all the expected general properties, including a projective coarse moduli space Moduli theory Algebraic varieties Altmann, Klaus (DE-588)142106410 ctb Kovács, Sándor J. 1965- (DE-588)141600675 ctb Erscheint auch als Druck-Ausgabe 978-1-00-934610-8 Cambridge tracts in mathematics 231 (DE-604)BV047362617 231 https://doi.org/10.1017/9781009346115 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kollár, János 1956- Families of varieties of general type Moduli theory Algebraic varieties Cambridge tracts in mathematics |
title | Families of varieties of general type |
title_auth | Families of varieties of general type |
title_exact_search | Families of varieties of general type |
title_exact_search_txtP | Families of varieties of general type |
title_full | Families of varieties of general type János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács |
title_fullStr | Families of varieties of general type János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács |
title_full_unstemmed | Families of varieties of general type János Kollár ; with the collaboration of Klaus Altmann and Sańdor J. Kovács |
title_short | Families of varieties of general type |
title_sort | families of varieties of general type |
topic | Moduli theory Algebraic varieties |
topic_facet | Moduli theory Algebraic varieties |
url | https://doi.org/10.1017/9781009346115 |
volume_link | (DE-604)BV047362617 |
work_keys_str_mv | AT kollarjanos familiesofvarietiesofgeneraltype AT altmannklaus familiesofvarietiesofgeneraltype AT kovacssandorj familiesofvarietiesofgeneraltype |