Deep learning of the dynamics of complex systems with its applications to biochemical molecules:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Beschreibung: | 1 Online-Ressource (xiii, 135 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048989745 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 230606s2022 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.17169/refubium-39024 |2 doi | |
024 | 7 | |a urn:nbn:de:kobv:188-refubium-39306-0 |2 urn | |
035 | |a (OCoLC)1381310095 | ||
035 | |a (DE-599)BVBBV048989745 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
084 | |a 500 |2 FUB | ||
100 | 1 | |a Mardt, Andreas |e Verfasser |0 (DE-588)1292099356 |4 aut | |
245 | 1 | 0 | |a Deep learning of the dynamics of complex systems with its applications to biochemical molecules |c eingereicht von Andreas Mardt |
264 | 1 | |a Berlin |c 2022 | |
300 | |a 1 Online-Ressource (xiii, 135 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Freie Universität Berlin |d 2023 | ||
650 | 4 | |a Koopman operator | |
650 | 4 | |a deep learning | |
650 | 4 | |a molecular dynamics | |
650 | 4 | |a neural networks | |
650 | 4 | |a generative models | |
650 | 4 | |a physical constraints | |
650 | 4 | |a decomposition | |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Mardt, Andreas |t Deep learning of the dynamics of complex systems with its applications to biochemical molecules |w (DE-604)BV048989747 |
856 | 4 | 0 | |u https://refubium.fu-berlin.de/handle/fub188/39306 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034253125 |
Datensatz im Suchindex
_version_ | 1804185244359720960 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mardt, Andreas |
author_GND | (DE-588)1292099356 |
author_facet | Mardt, Andreas |
author_role | aut |
author_sort | Mardt, Andreas |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV048989745 |
collection | ebook |
ctrlnum | (OCoLC)1381310095 (DE-599)BVBBV048989745 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01620nmm a2200433 c 4500</leader><controlfield tag="001">BV048989745</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230606s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.17169/refubium-39024</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:kobv:188-refubium-39306-0</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381310095</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048989745</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">500</subfield><subfield code="2">FUB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mardt, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1292099356</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning of the dynamics of complex systems with its applications to biochemical molecules</subfield><subfield code="c">eingereicht von Andreas Mardt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 135 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Freie Universität Berlin</subfield><subfield code="d">2023</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Koopman operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generative models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical constraints</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">decomposition</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Mardt, Andreas</subfield><subfield code="t">Deep learning of the dynamics of complex systems with its applications to biochemical molecules</subfield><subfield code="w">(DE-604)BV048989747</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://refubium.fu-berlin.de/handle/fub188/39306</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034253125</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048989745 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:06:45Z |
indexdate | 2024-07-10T09:52:09Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034253125 |
oclc_num | 1381310095 |
open_access_boolean | 1 |
owner | DE-188 |
owner_facet | DE-188 |
physical | 1 Online-Ressource (xiii, 135 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Mardt, Andreas Verfasser (DE-588)1292099356 aut Deep learning of the dynamics of complex systems with its applications to biochemical molecules eingereicht von Andreas Mardt Berlin 2022 1 Online-Ressource (xiii, 135 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Freie Universität Berlin 2023 Koopman operator deep learning molecular dynamics neural networks generative models physical constraints decomposition (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Druck-Ausgabe Mardt, Andreas Deep learning of the dynamics of complex systems with its applications to biochemical molecules (DE-604)BV048989747 https://refubium.fu-berlin.de/handle/fub188/39306 Resolving-System kostenfrei Volltext |
spellingShingle | Mardt, Andreas Deep learning of the dynamics of complex systems with its applications to biochemical molecules Koopman operator deep learning molecular dynamics neural networks generative models physical constraints decomposition |
subject_GND | (DE-588)4113937-9 |
title | Deep learning of the dynamics of complex systems with its applications to biochemical molecules |
title_auth | Deep learning of the dynamics of complex systems with its applications to biochemical molecules |
title_exact_search | Deep learning of the dynamics of complex systems with its applications to biochemical molecules |
title_exact_search_txtP | Deep learning of the dynamics of complex systems with its applications to biochemical molecules |
title_full | Deep learning of the dynamics of complex systems with its applications to biochemical molecules eingereicht von Andreas Mardt |
title_fullStr | Deep learning of the dynamics of complex systems with its applications to biochemical molecules eingereicht von Andreas Mardt |
title_full_unstemmed | Deep learning of the dynamics of complex systems with its applications to biochemical molecules eingereicht von Andreas Mardt |
title_short | Deep learning of the dynamics of complex systems with its applications to biochemical molecules |
title_sort | deep learning of the dynamics of complex systems with its applications to biochemical molecules |
topic | Koopman operator deep learning molecular dynamics neural networks generative models physical constraints decomposition |
topic_facet | Koopman operator deep learning molecular dynamics neural networks generative models physical constraints decomposition Hochschulschrift |
url | https://refubium.fu-berlin.de/handle/fub188/39306 |
work_keys_str_mv | AT mardtandreas deeplearningofthedynamicsofcomplexsystemswithitsapplicationstobiochemicalmolecules |