The 9 pitfalls of data science:
Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession.
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2019
|
Ausgabe: | First edition |
Schriftenreihe: | Oxford scholarship online
|
Schlagworte: | |
Online-Zugang: | UPA01 Volltext |
Zusammenfassung: | Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession. Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. 'The 9 Pitfalls of Data Science' shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (v, 256 Seiten) illustrations (black and white) |
ISBN: | 9780191879937 |
DOI: | 10.1093/oso/9780198844396.001.0001 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048972080 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230524s2019 xxk|||| o||u| ||||||eng d | ||
020 | |a 9780191879937 |c ebook |9 978-0-19-187993-7 | ||
024 | 7 | |a 10.1093/oso/9780198844396.001.0001 |2 doi | |
035 | |a (OCoLC)1381306512 | ||
035 | |a (DE-599)KXP1764227700 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-739 | ||
082 | 0 | |a 005.7 | |
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a SU 100 |0 (DE-625)143693: |2 rvk | ||
100 | 1 | |a Smith, Gary |d 1945- |e Verfasser |0 (DE-588)133231879 |4 aut | |
245 | 1 | 0 | |a The 9 pitfalls of data science |c Gary Smith and Jay Cordes |
246 | 1 | 3 | |a Nine pitfalls of data science |
250 | |a First edition | ||
264 | 1 | |a Oxford |b Oxford University Press |c 2019 | |
300 | |a 1 Online-Ressource (v, 256 Seiten) |b illustrations (black and white) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Oxford scholarship online | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession. | |
520 | 3 | |a Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. 'The 9 Pitfalls of Data Science' shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession | |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
653 | 0 | |a Big data | |
653 | 0 | |a Quantitative research | |
653 | 0 | |a Big data | |
653 | 0 | |a Quantitative research | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cordes, Jay |e Verfasser |0 (DE-588)1206898852 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-19-884439-6 |
856 | 4 | 0 | |u https://doi.org/10.1093/oso/9780198844396.001.0001 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-28-OSK |a ZDB-28-OSD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034235681 | ||
966 | e | |u https://doi.org/10.1093/oso/9780198844396.001.0001 |l UPA01 |p ZDB-28-OSD |q UPA_PDA_OSD_Kauf2021-22 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185212217720832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Smith, Gary 1945- Cordes, Jay |
author_GND | (DE-588)133231879 (DE-588)1206898852 |
author_facet | Smith, Gary 1945- Cordes, Jay |
author_role | aut aut |
author_sort | Smith, Gary 1945- |
author_variant | g s gs j c jc |
building | Verbundindex |
bvnumber | BV048972080 |
classification_rvk | ST 530 SU 100 |
collection | ZDB-28-OSK ZDB-28-OSD |
ctrlnum | (OCoLC)1381306512 (DE-599)KXP1764227700 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1093/oso/9780198844396.001.0001 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02860nmm a2200541 c 4500</leader><controlfield tag="001">BV048972080</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230524s2019 xxk|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191879937</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-19-187993-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1093/oso/9780198844396.001.0001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381306512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1764227700</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SU 100</subfield><subfield code="0">(DE-625)143693:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smith, Gary</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133231879</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The 9 pitfalls of data science</subfield><subfield code="c">Gary Smith and Jay Cordes</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Nine pitfalls of data science</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (v, 256 Seiten)</subfield><subfield code="b">illustrations (black and white)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford scholarship online</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. 'The 9 Pitfalls of Data Science' shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cordes, Jay</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1206898852</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-19-884439-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1093/oso/9780198844396.001.0001</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-28-OSK</subfield><subfield code="a">ZDB-28-OSD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034235681</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1093/oso/9780198844396.001.0001</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-28-OSD</subfield><subfield code="q">UPA_PDA_OSD_Kauf2021-22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048972080 |
illustrated | Illustrated |
index_date | 2024-07-03T22:03:04Z |
indexdate | 2024-07-10T09:51:38Z |
institution | BVB |
isbn | 9780191879937 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034235681 |
oclc_num | 1381306512 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | 1 Online-Ressource (v, 256 Seiten) illustrations (black and white) |
psigel | ZDB-28-OSK ZDB-28-OSD ZDB-28-OSD UPA_PDA_OSD_Kauf2021-22 |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Oxford University Press |
record_format | marc |
series2 | Oxford scholarship online |
spelling | Smith, Gary 1945- Verfasser (DE-588)133231879 aut The 9 pitfalls of data science Gary Smith and Jay Cordes Nine pitfalls of data science First edition Oxford Oxford University Press 2019 1 Online-Ressource (v, 256 Seiten) illustrations (black and white) txt rdacontent c rdamedia cr rdacarrier Oxford scholarship online Includes bibliographical references and index Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession. Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. 'The 9 Pitfalls of Data Science' shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession Data Science (DE-588)1140936166 gnd rswk-swf Big data Quantitative research Electronic books Data Science (DE-588)1140936166 s DE-604 Cordes, Jay Verfasser (DE-588)1206898852 aut Erscheint auch als Druck-Ausgabe 978-0-19-884439-6 https://doi.org/10.1093/oso/9780198844396.001.0001 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Smith, Gary 1945- Cordes, Jay The 9 pitfalls of data science Data Science (DE-588)1140936166 gnd |
subject_GND | (DE-588)1140936166 |
title | The 9 pitfalls of data science |
title_alt | Nine pitfalls of data science |
title_auth | The 9 pitfalls of data science |
title_exact_search | The 9 pitfalls of data science |
title_exact_search_txtP | The 9 pitfalls of data science |
title_full | The 9 pitfalls of data science Gary Smith and Jay Cordes |
title_fullStr | The 9 pitfalls of data science Gary Smith and Jay Cordes |
title_full_unstemmed | The 9 pitfalls of data science Gary Smith and Jay Cordes |
title_short | The 9 pitfalls of data science |
title_sort | the 9 pitfalls of data science |
topic | Data Science (DE-588)1140936166 gnd |
topic_facet | Data Science |
url | https://doi.org/10.1093/oso/9780198844396.001.0001 |
work_keys_str_mv | AT smithgary the9pitfallsofdatascience AT cordesjay the9pitfallsofdatascience AT smithgary ninepitfallsofdatascience AT cordesjay ninepitfallsofdatascience |