The 9 pitfalls of data science:

Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smith, Gary 1945- (VerfasserIn), Cordes, Jay (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Oxford Oxford University Press 2019
Ausgabe:First edition
Schriftenreihe:Oxford scholarship online
Schlagworte:
Online-Zugang:UPA01
Volltext
Zusammenfassung:Using bad data -- Putting data before theory -- Worshiping math -- Worshiping computers -- Torturing data -- Fooling yourself -- Confusing correlation with causation -- Being surprised by regression toward the mean -- Doing harm -- Case study : the Great Recession.
Data science has never had more influence on the world. Large companies are now seeing the benefit of employing data scientists to interpret the vast amounts of data that now exists. However, the field is so new and is evolving so rapidly that the analysis produced can be haphazard at best. 'The 9 Pitfalls of Data Science' shows us real-world examples of what can go wrong. Written to be an entertaining read, this invaluable guide investigates the all too common mistakes of data scientists - who can be plagued by lazy thinking, whims, hunches, and prejudices - and indicates how they have been at the root of many disasters, including the Great Recession
Beschreibung:Includes bibliographical references and index
Beschreibung:1 Online-Ressource (v, 256 Seiten) illustrations (black and white)
ISBN:9780191879937
DOI:10.1093/oso/9780198844396.001.0001

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen