Finite difference methods for nonlinear evolution equations:

Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sun, Zhi-zhong 1963- (VerfasserIn), Zhang, Qifeng 1987- (VerfasserIn), Gao, Guang-hua 1985- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Boston De Gruyter [2023]
Beijing China Science Publishing & Media Ltd. [2023]
Schriftenreihe:De Gruyter series in applied and numerical mathematics volume 8
Schlagworte:
Zusammenfassung:Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines
Beschreibung:XIV, 416 Seiten
ISBN:9783110795851

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!