Finite difference methods for nonlinear evolution equations:
Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
Beijing China Science Publishing & Media Ltd. [2023] |
Schriftenreihe: | De Gruyter series in applied and numerical mathematics
volume 8 |
Schlagworte: | |
Zusammenfassung: | Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines |
Beschreibung: | XIV, 416 Seiten |
ISBN: | 9783110795851 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048968651 | ||
003 | DE-604 | ||
005 | 20231110 | ||
007 | t | ||
008 | 230522s2023 |||| 00||| eng d | ||
020 | |a 9783110795851 |c hbk |9 978-3-11-079585-1 | ||
035 | |a (OCoLC)1380845058 | ||
035 | |a (DE-599)BVBBV048968651 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 | ||
082 | 0 | |a 515.353 | |
084 | |a SK 580 |0 (DE-625)143247: |2 rvk | ||
100 | 1 | |a Sun, Zhi-zhong |d 1963- |e Verfasser |0 (DE-588)1100560432 |4 aut | |
245 | 1 | 0 | |a Finite difference methods for nonlinear evolution equations |c Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
264 | 1 | |a Beijing |b China Science Publishing & Media Ltd. |c [2023] | |
300 | |a XIV, 416 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in applied and numerical mathematics |v volume 8 | |
520 | |a Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines | ||
650 | 4 | |a Differentialgleichung | |
650 | 4 | |a Finite-Differenzen-Methoden | |
650 | 4 | |a Finites Element | |
650 | 4 | |a Nichtlineare Gleichnugan | |
650 | 7 | |a MATHEMATICS / Numerical Analysis |2 bisacsh | |
700 | 1 | |a Zhang, Qifeng |d 1987- |e Verfasser |0 (DE-588)1292167025 |4 aut | |
700 | 1 | |a Gao, Guang-hua |d 1985- |e Verfasser |0 (DE-588)1217419950 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-079601-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3--11-079611-7 |
830 | 0 | |a De Gruyter series in applied and numerical mathematics |v volume 8 |w (DE-604)BV044780807 |9 8 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034232306 |
Datensatz im Suchindex
_version_ | 1804185206188408832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- |
author_GND | (DE-588)1100560432 (DE-588)1292167025 (DE-588)1217419950 |
author_facet | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- |
author_role | aut aut aut |
author_sort | Sun, Zhi-zhong 1963- |
author_variant | z z s zzs q z qz g h g ghg |
building | Verbundindex |
bvnumber | BV048968651 |
classification_rvk | SK 580 |
ctrlnum | (OCoLC)1380845058 (DE-599)BVBBV048968651 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02616nam a2200433zcb4500</leader><controlfield tag="001">BV048968651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230522s2023 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110795851</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-11-079585-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1380845058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048968651</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 580</subfield><subfield code="0">(DE-625)143247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Zhi-zhong</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1100560432</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite difference methods for nonlinear evolution equations</subfield><subfield code="c">Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">China Science Publishing & Media Ltd.</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 416 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">volume 8</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialgleichung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-Differenzen-Methoden</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finites Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nichtlineare Gleichnugan</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qifeng</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1292167025</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Guang-hua</subfield><subfield code="d">1985-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1217419950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-079601-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3--11-079611-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">volume 8</subfield><subfield code="w">(DE-604)BV044780807</subfield><subfield code="9">8</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034232306</subfield></datafield></record></collection> |
id | DE-604.BV048968651 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:02:14Z |
indexdate | 2024-07-10T09:51:33Z |
institution | BVB |
isbn | 9783110795851 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034232306 |
oclc_num | 1380845058 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 |
owner_facet | DE-19 DE-BY-UBM DE-703 |
physical | XIV, 416 Seiten |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter China Science Publishing & Media Ltd. |
record_format | marc |
series | De Gruyter series in applied and numerical mathematics |
series2 | De Gruyter series in applied and numerical mathematics |
spelling | Sun, Zhi-zhong 1963- Verfasser (DE-588)1100560432 aut Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao Berlin ; Boston De Gruyter [2023] Beijing China Science Publishing & Media Ltd. [2023] XIV, 416 Seiten txt rdacontent n rdamedia nc rdacarrier De Gruyter series in applied and numerical mathematics volume 8 Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh Zhang, Qifeng 1987- Verfasser (DE-588)1292167025 aut Gao, Guang-hua 1985- Verfasser (DE-588)1217419950 aut Erscheint auch als Online-Ausgabe, PDF 978-3-11-079601-8 Erscheint auch als Online-Ausgabe, EPUB 978-3--11-079611-7 De Gruyter series in applied and numerical mathematics volume 8 (DE-604)BV044780807 8 |
spellingShingle | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- Finite difference methods for nonlinear evolution equations De Gruyter series in applied and numerical mathematics Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh |
title | Finite difference methods for nonlinear evolution equations |
title_auth | Finite difference methods for nonlinear evolution equations |
title_exact_search | Finite difference methods for nonlinear evolution equations |
title_exact_search_txtP | Finite difference methods for nonlinear evolution equations |
title_full | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao |
title_fullStr | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao |
title_full_unstemmed | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, Guang-hua Gao |
title_short | Finite difference methods for nonlinear evolution equations |
title_sort | finite difference methods for nonlinear evolution equations |
topic | Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh |
topic_facet | Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis |
volume_link | (DE-604)BV044780807 |
work_keys_str_mv | AT sunzhizhong finitedifferencemethodsfornonlinearevolutionequations AT zhangqifeng finitedifferencemethodsfornonlinearevolutionequations AT gaoguanghua finitedifferencemethodsfornonlinearevolutionequations |