Machine learning under malware attack:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Springer Vieweg
[2023]
|
Schriftenreihe: | Research
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xxxiv, 116 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 209 g |
ISBN: | 9783658404413 3658404418 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048968184 | ||
003 | DE-604 | ||
005 | 20230725 | ||
007 | t | ||
008 | 230522s2023 gw a||| m||| 00||| eng d | ||
015 | |a 22,N49 |2 dnb | ||
016 | 7 | |a 1274567319 |2 DE-101 | |
020 | |a 9783658404413 |c Broschur : circa EUR 80.24 (DE) (freier Preis), circa EUR 82.49 (AT) (freier Preis), circa CHF 88.50 (freier Preis), circa EUR 74.99 |9 978-3-658-40441-3 | ||
020 | |a 3658404418 |9 3-658-40441-8 | ||
024 | 3 | |a 9783658404413 | |
028 | 5 | 2 | |a Bestellnummer: 978-3-658-40441-3 |
028 | 5 | 2 | |a Bestellnummer: 89228609 |
035 | |a (OCoLC)1379829788 | ||
035 | |a (DE-599)DNB1274567319 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-HE | ||
049 | |a DE-706 |a DE-83 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |8 1\p |a 004 |2 23sdnb | ||
100 | 1 | |a Labaca-Castro, Raphael |e Verfasser |0 (DE-588)1290186871 |4 aut | |
245 | 1 | 0 | |a Machine learning under malware attack |c Raphael Labaca-Castro |
264 | 1 | |a Wiesbaden |b Springer Vieweg |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a xxxiv, 116 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm, 209 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Research | |
502 | |b Dissertation |c Universität der Bundeswehr München |d 2022 | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersicherheit |0 (DE-588)4274324-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Malware |0 (DE-588)4687059-3 |2 gnd |9 rswk-swf |
653 | |a Computer Security | ||
653 | |a Machine Learning | ||
653 | |a Adversarial ML | ||
653 | |a Trustworthy AI | ||
653 | |a Malware | ||
653 | |a FAME | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Malware |0 (DE-588)4687059-3 |D s |
689 | 0 | 2 | |a Computersicherheit |0 (DE-588)4274324-2 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Springer Fachmedien Wiesbaden |0 (DE-588)1043386068 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-658-40442-0 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=da01a9e477034c2c97a7683718d3b6f7&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1274567319/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034231846&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034231846 | ||
883 | 1 | |8 1\p |a vlb |d 20221203 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804185205460697088 |
---|---|
adam_text | CONTENTS
PART
I
THE
BEGINNINGS
OF
ADVERSARIAL
ML
1
INTRODUCTION
....................................................................................................
3
1.1
MOTIVATION
......................................................................................
3
1.2
PROBLEM
STATEMENT
........................................................................
4
1.3
ORGANIZATION
OF
DISSERTATION
.........................................................
7
2
BACKGROUND
....................................................................................................
9
2.1
MALWARE
.........................................................................................
9
2.2
PORTABLE
EXECUTABLE
FORMAT
........................................................
10
2.3
RELATED
WORK
................................................................................
12
2.3.1
GRADIENT
OPTIMIZATION
...................................................
13
2.3.2
GENERATIVE
ADVERSARIAL
NETWORKS
..................................
14
2.3.3
REINFORCEMENT
LEARNING
.................................................
15
2.3.4
GENETIC
PROGRAMMING
.....................................................
16
2.3.5
UNIVERSAL
ADVERSARIAL
PERTURBATIONS
..............................
18
2.4
SUMMARY
.......................................................................................
19
PART
II
FRAMEWORK
FOR
ADVERSARIAL
MALWARE
EVALUATION
3
FAME
..............................................................................................................
23
3.1
NOTATION
.........................................................................................
23
3.1.1
FEATURE-SPACE
ATTACKS
...................................................
24
3.1.2
FEATURE-SPACE
CONSTRAINTS
..............................................
24
3.1.3
PROBLEM-SPACE
ATTACKS
.................................................
24
3.1.4
PROBLEM-SPACE
CONSTRAINTS
............................................
24
3.2
THREAT
MODEL
...............................................................................
25
XXIV
CONTENTS
3.2.1
ADVERSARY
OBJECTIVES
.....................................................
25
3.2.2
ADVERSARY
KNOWLEDGE
...................................................
25
3.2.3
ADVERSARY
CAPABILITIES
...................................................
26
3.3
EXPERIMENTAL
SETTINGS
..................................................................
26
3.3.1
TARGET
MODEL
...................................................................
27
3.3.2
DATASETS
............................................................................
27
3.3.3
BYTE-LEVEL
PERTURBATIONS
...............................................
29
3.3.4
INTEGRITY
VERIFICATION
.......................................................
30
3.4
SUMMARY
........................................................................................
31
PART
III
PROBLEM-SPACE
ATTACKS
4
STOCHASTIC
METHOD
.........................................................................................
35
4.1
REQUIREMENTS
.................................................................................
36
4.2
METHODOLOGY
...................................................................................
36
4.2.1
TOOLBOX
............................................................................
37
4.2.2
VERIFIER
............................................................................
37
4.2.3
CLASSIFIER
..........................................................................
37
4.3
EVALUATION
.......................................................................................
38
4.3.1
INTEGRITY
..........................................................................
38
4.3.2
EVASIVENESS
.....................................................................
40
4.3.3
HIGH-DIMENSIONAL
SEQUENCES
.......................................
41
4.4
SUMMARY
.........................................................................................
42
5
GENETIC
PROGRAMMING
..................................................................................
43
5.1
REQUIREMENTS
.................................................................................
44
5.2
METHODOLOGY
...................................................................................
45
5.2.1
GENETIC
OPERATORS
..........................................................
46
5.2.2
FITNESS
FUNCTION
............................................................
47
5.3
EVALUATION
.......................................................................................
47
5.4
CROSS-EVASION
.................................................................................
49
5.5
SUMMARY
.........................................................................................
50
6
REINFORCEMENT
LEARNING
..............................................................................
51
6.1
METHODOLOGY
...................................................................................
52
6.1.1
STATE
..................................................................................
53
6.1.2
ACTION
..............................................................................
53
6.1.3
REWARD
.............................................................................
53
6.1.4
PENALTY
............................................................................
55
6.1.5
MODEL
PARAMETERS
...........................................................
55
CONTENTS
XXV
6.2
EVALUATION
.....................................................................................
56
6.2.1
RESET
................................................................................
56
6.2.2
DIVERSITY
..........................................................................
56
6.2.3
EVASION
RATE
...................................................................
57
6.3
SUMMARY
........................................................................................
60
7
UNIVERSAL
ATTACKS
.........................................................................................
61
7.1
REQUIREMENTS
................................................................................
62
7.2
UNIVERSAL
EVASION
RATE
.................................................................
62
7.3
UAP
SEARCH
....................................................................................
62
7.4
EVALUATION
......................................................................................
64
7.5
SUMMARY
........................................................................................
65
PART
IV
FEATURE-SPACE
ATTACKS
8
GRADIENT
OPTIMIZATION
...............................................................................
69
8.1
CONVOLUTIONAL
NEURAL
NETWORKS
.....................................................
69
8.2
METHODOLOGY
...............................................................................
70
8.3
SUMMARY
........................................................................................
72
9
GENERATIVE
ADVERSARIAL
NETS
.....................................................................
73
9.1
GANS
IN
SECURITY
...........................................................................
74
9.2
METHODOLOGY
...............................................................................
74
9.3
SUMMARY
.........................................................................................
76
PART
V
BENCHMARK
&
DEFENSES
10
COMPARISON
OF
STRATEGIES
...........................................................................
79
10.1
BENCHMARK
SETTINGS
......................................................................
79
10.2
SUMMARY
........................................................................................
81
11
TOWARDS
ROBUSTNESS
.....................................................................................
83
11.1
FEATURE
REDUCTION
........................................................................
84
11.2
UAP-BASED
ADVERSARIAL
TRAINING
...............................................
85
11.2.1
EVALUATE
HARDENED
MODELS
...........................................
87
11.2.2
UAP
SEARCH
ALTERNATIVE
................................................
89
11.3
SUMMARY
........................................................................................
91
XXVI
CONTENTS
PART
VI
CLOSING
REMARKS
12
CONCLUSIONS
&
OUTLOOK
................................................................................
95
12.1
REVISING
RESEARCH
QUESTIONS
.......................................................
96
12.2
CONTRIBUTIONS
..................................................................................
99
12.2.1
EMPIRICAL
GUIDANCE
FOR
MALWARE
ATTACKS
..................
99
12.2.2
ADVERSARIAL
DEFENSES
DERIVED
FROM
UAP
ATTACKS
....
100
12.2.3
FRAMEWORK
TO
EVALUATE
MALWARE
CLASSIFIERS
..............
100
12.3
CONNECTING
THE
DOTS
......................................................................
101
12.4
FUTURE
WORK
..................................................................................
102
LIST
OF
PUBLICATIONS
................................................................................................
105
REFERENCES
................................................................................................................
107
|
adam_txt |
CONTENTS
PART
I
THE
BEGINNINGS
OF
ADVERSARIAL
ML
1
INTRODUCTION
.
3
1.1
MOTIVATION
.
3
1.2
PROBLEM
STATEMENT
.
4
1.3
ORGANIZATION
OF
DISSERTATION
.
7
2
BACKGROUND
.
9
2.1
MALWARE
.
9
2.2
PORTABLE
EXECUTABLE
FORMAT
.
10
2.3
RELATED
WORK
.
12
2.3.1
GRADIENT
OPTIMIZATION
.
13
2.3.2
GENERATIVE
ADVERSARIAL
NETWORKS
.
14
2.3.3
REINFORCEMENT
LEARNING
.
15
2.3.4
GENETIC
PROGRAMMING
.
16
2.3.5
UNIVERSAL
ADVERSARIAL
PERTURBATIONS
.
18
2.4
SUMMARY
.
19
PART
II
FRAMEWORK
FOR
ADVERSARIAL
MALWARE
EVALUATION
3
FAME
.
23
3.1
NOTATION
.
23
3.1.1
FEATURE-SPACE
ATTACKS
.
24
3.1.2
FEATURE-SPACE
CONSTRAINTS
.
24
3.1.3
PROBLEM-SPACE
ATTACKS
.
24
3.1.4
PROBLEM-SPACE
CONSTRAINTS
.
24
3.2
THREAT
MODEL
.
25
XXIV
CONTENTS
3.2.1
ADVERSARY
OBJECTIVES
.
25
3.2.2
ADVERSARY
KNOWLEDGE
.
25
3.2.3
ADVERSARY
CAPABILITIES
.
26
3.3
EXPERIMENTAL
SETTINGS
.
26
3.3.1
TARGET
MODEL
.
27
3.3.2
DATASETS
.
27
3.3.3
BYTE-LEVEL
PERTURBATIONS
.
29
3.3.4
INTEGRITY
VERIFICATION
.
30
3.4
SUMMARY
.
31
PART
III
PROBLEM-SPACE
ATTACKS
4
STOCHASTIC
METHOD
.
35
4.1
REQUIREMENTS
.
36
4.2
METHODOLOGY
.
36
4.2.1
TOOLBOX
.
37
4.2.2
VERIFIER
.
37
4.2.3
CLASSIFIER
.
37
4.3
EVALUATION
.
38
4.3.1
INTEGRITY
.
38
4.3.2
EVASIVENESS
.
40
4.3.3
HIGH-DIMENSIONAL
SEQUENCES
.
41
4.4
SUMMARY
.
42
5
GENETIC
PROGRAMMING
.
43
5.1
REQUIREMENTS
.
44
5.2
METHODOLOGY
.
45
5.2.1
GENETIC
OPERATORS
.
46
5.2.2
FITNESS
FUNCTION
.
47
5.3
EVALUATION
.
47
5.4
CROSS-EVASION
.
49
5.5
SUMMARY
.
50
6
REINFORCEMENT
LEARNING
.
51
6.1
METHODOLOGY
.
52
6.1.1
STATE
.
53
6.1.2
ACTION
.
53
6.1.3
REWARD
.
53
6.1.4
PENALTY
.
55
6.1.5
MODEL
PARAMETERS
.
55
CONTENTS
XXV
6.2
EVALUATION
.
56
6.2.1
RESET
.
56
6.2.2
DIVERSITY
.
56
6.2.3
EVASION
RATE
.
57
6.3
SUMMARY
.
60
7
UNIVERSAL
ATTACKS
.
61
7.1
REQUIREMENTS
.
62
7.2
UNIVERSAL
EVASION
RATE
.
62
7.3
UAP
SEARCH
.
62
7.4
EVALUATION
.
64
7.5
SUMMARY
.
65
PART
IV
FEATURE-SPACE
ATTACKS
8
GRADIENT
OPTIMIZATION
.
69
8.1
CONVOLUTIONAL
NEURAL
NETWORKS
.
69
8.2
METHODOLOGY
.
70
8.3
SUMMARY
.
72
9
GENERATIVE
ADVERSARIAL
NETS
.
73
9.1
GANS
IN
SECURITY
.
74
9.2
METHODOLOGY
.
74
9.3
SUMMARY
.
76
PART
V
BENCHMARK
&
DEFENSES
10
COMPARISON
OF
STRATEGIES
.
79
10.1
BENCHMARK
SETTINGS
.
79
10.2
SUMMARY
.
81
11
TOWARDS
ROBUSTNESS
.
83
11.1
FEATURE
REDUCTION
.
84
11.2
UAP-BASED
ADVERSARIAL
TRAINING
.
85
11.2.1
EVALUATE
HARDENED
MODELS
.
87
11.2.2
UAP
SEARCH
ALTERNATIVE
.
89
11.3
SUMMARY
.
91
XXVI
CONTENTS
PART
VI
CLOSING
REMARKS
12
CONCLUSIONS
&
OUTLOOK
.
95
12.1
REVISING
RESEARCH
QUESTIONS
.
96
12.2
CONTRIBUTIONS
.
99
12.2.1
EMPIRICAL
GUIDANCE
FOR
MALWARE
ATTACKS
.
99
12.2.2
ADVERSARIAL
DEFENSES
DERIVED
FROM
UAP
ATTACKS
.
100
12.2.3
FRAMEWORK
TO
EVALUATE
MALWARE
CLASSIFIERS
.
100
12.3
CONNECTING
THE
DOTS
.
101
12.4
FUTURE
WORK
.
102
LIST
OF
PUBLICATIONS
.
105
REFERENCES
.
107 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Labaca-Castro, Raphael |
author_GND | (DE-588)1290186871 |
author_facet | Labaca-Castro, Raphael |
author_role | aut |
author_sort | Labaca-Castro, Raphael |
author_variant | r l c rlc |
building | Verbundindex |
bvnumber | BV048968184 |
classification_rvk | ST 300 |
ctrlnum | (OCoLC)1379829788 (DE-599)DNB1274567319 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02721nam a2200637 c 4500</leader><controlfield tag="001">BV048968184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230725 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230522s2023 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N49</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1274567319</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783658404413</subfield><subfield code="c">Broschur : circa EUR 80.24 (DE) (freier Preis), circa EUR 82.49 (AT) (freier Preis), circa CHF 88.50 (freier Preis), circa EUR 74.99</subfield><subfield code="9">978-3-658-40441-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3658404418</subfield><subfield code="9">3-658-40441-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783658404413</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 978-3-658-40441-3</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 89228609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1379829788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1274567319</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-HE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Labaca-Castro, Raphael</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1290186871</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning under malware attack</subfield><subfield code="c">Raphael Labaca-Castro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Springer Vieweg</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxiv, 116 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm, 209 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Research</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität der Bundeswehr München</subfield><subfield code="d">2022</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Malware</subfield><subfield code="0">(DE-588)4687059-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Security</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Adversarial ML</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trustworthy AI</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Malware</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">FAME</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Malware</subfield><subfield code="0">(DE-588)4687059-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computersicherheit</subfield><subfield code="0">(DE-588)4274324-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Fachmedien Wiesbaden</subfield><subfield code="0">(DE-588)1043386068</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-658-40442-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=da01a9e477034c2c97a7683718d3b6f7&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1274567319/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034231846&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034231846</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20221203</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048968184 |
illustrated | Illustrated |
index_date | 2024-07-03T22:02:08Z |
indexdate | 2024-07-10T09:51:32Z |
institution | BVB |
institution_GND | (DE-588)1043386068 |
isbn | 9783658404413 3658404418 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034231846 |
oclc_num | 1379829788 |
open_access_boolean | |
owner | DE-706 DE-83 |
owner_facet | DE-706 DE-83 |
physical | xxxiv, 116 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 209 g |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Vieweg |
record_format | marc |
series2 | Research |
spelling | Labaca-Castro, Raphael Verfasser (DE-588)1290186871 aut Machine learning under malware attack Raphael Labaca-Castro Wiesbaden Springer Vieweg [2023] © 2023 xxxiv, 116 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 209 g txt rdacontent n rdamedia nc rdacarrier Research Dissertation Universität der Bundeswehr München 2022 Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Computersicherheit (DE-588)4274324-2 gnd rswk-swf Malware (DE-588)4687059-3 gnd rswk-swf Computer Security Machine Learning Adversarial ML Trustworthy AI Malware FAME (DE-588)4113937-9 Hochschulschrift gnd-content Maschinelles Lernen (DE-588)4193754-5 s Malware (DE-588)4687059-3 s Computersicherheit (DE-588)4274324-2 s DE-604 Springer Fachmedien Wiesbaden (DE-588)1043386068 pbl Erscheint auch als Online-Ausgabe 978-3-658-40442-0 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=da01a9e477034c2c97a7683718d3b6f7&prov=M&dok_var=1&dok_ext=htm Inhaltstext B:DE-101 application/pdf https://d-nb.info/1274567319/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034231846&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20221203 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Labaca-Castro, Raphael Machine learning under malware attack Maschinelles Lernen (DE-588)4193754-5 gnd Computersicherheit (DE-588)4274324-2 gnd Malware (DE-588)4687059-3 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4274324-2 (DE-588)4687059-3 (DE-588)4113937-9 |
title | Machine learning under malware attack |
title_auth | Machine learning under malware attack |
title_exact_search | Machine learning under malware attack |
title_exact_search_txtP | Machine learning under malware attack |
title_full | Machine learning under malware attack Raphael Labaca-Castro |
title_fullStr | Machine learning under malware attack Raphael Labaca-Castro |
title_full_unstemmed | Machine learning under malware attack Raphael Labaca-Castro |
title_short | Machine learning under malware attack |
title_sort | machine learning under malware attack |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Computersicherheit (DE-588)4274324-2 gnd Malware (DE-588)4687059-3 gnd |
topic_facet | Maschinelles Lernen Computersicherheit Malware Hochschulschrift |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=da01a9e477034c2c97a7683718d3b6f7&prov=M&dok_var=1&dok_ext=htm https://d-nb.info/1274567319/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034231846&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT labacacastroraphael machinelearningundermalwareattack AT springerfachmedienwiesbaden machinelearningundermalwareattack |