Computational physics: with worked out examples in FORTRAN and MATLAB
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter graduate
|
Schlagworte: | |
Online-Zugang: | https://www.degruyter.com/isbn/9783110782363 Inhaltsverzeichnis |
Beschreibung: | XI, 396 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
ISBN: | 9783110782363 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048935865 | ||
003 | DE-604 | ||
005 | 20231117 | ||
007 | t | ||
008 | 230509s2023 gw a||| |||| 00||| eng d | ||
015 | |a 22,N51 |2 dnb | ||
016 | 7 | |a 1275630839 |2 DE-101 | |
020 | |a 9783110782363 |c : EUR 74.95 (DE) (freier Preis), EUR 74.95 (AT) (freier Preis) |9 978-3-11-078236-3 | ||
024 | 3 | |a 9783110782363 | |
035 | |a (OCoLC)1385299555 | ||
035 | |a (DE-599)DNB1275630839 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-11 |a DE-83 |a DE-703 |a DE-19 |a DE-20 | ||
084 | |a UC 600 |0 (DE-625)145524: |2 rvk | ||
084 | |a SK 955 |0 (DE-625)143274: |2 rvk | ||
084 | |a ST 630 |0 (DE-625)143685: |2 rvk | ||
084 | |a 530 |2 23sdnb | ||
100 | 1 | |a Bestehorn, Michael |d 1957- |e Verfasser |0 (DE-588)112842763 |4 aut | |
245 | 1 | 0 | |a Computational physics |b with worked out examples in FORTRAN and MATLAB |c Michael Bestehorn |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a XI, 396 Seiten |b Illustrationen, Diagramme |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter graduate | |
650 | 0 | 7 | |a Computerphysik |0 (DE-588)4273564-6 |2 gnd |9 rswk-swf |
653 | |a Differential Equations with Memory and Delay | ||
653 | |a Differentialgleichungen mit Speicher und Verzögerung | ||
653 | |a Gewöhnliche Differentialgleichungen | ||
653 | |a Monte Carlo Integration | ||
653 | |a Monte Carlo methods | ||
653 | |a Ordinary differential equations | ||
653 | |a Partial differential equations | ||
653 | |a Partielle Differentialgleichungen | ||
653 | |a TB: Textbook | ||
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Computerphysik |0 (DE-588)4273564-6 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-078252-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-078266-0 |
856 | 4 | 2 | |m X:MVB |u https://www.degruyter.com/isbn/9783110782363 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034199723&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034199723 |
Datensatz im Suchindex
_version_ | 1804185131975442432 |
---|---|
adam_text | CONTENTS
1
INTRODUCTION
-
1
1.1
GOAL,
CONTENTS,
AND
OUTLINE
-
1
1.2
THE
ENVIRONMENT
REQUIRED
FOR
PROGRAM
DEVELOPMENT
-
5
1.2.1
OPERATING
SYSTEM
-
5
1.2.2
SOFTWARE
PACKAGES
-
6
1.2.3
GRAPHICS
-
6
1.2.4
PROGRAM
DEVELOPMENT
AND
A
SIMPLE
SCRIPT
-
6
1.3
A
FIRST
EXAMPLE
-
THE
LOGISTIC
MAP
-
7
1.3.1
MAP
-
7
1.3.2
FORTRAN
----
9
1.3.3
PROBLEMS
-
12
BIBLIOGRAPHY
-
12
2
NONLINEAR
MAPS
-
13
2.1
FRENKEL-KOTOROVA
MODEL
-
13
2.1.1
CLASSICAL
FORMULATION
-
13
2.1.2
EQUILIBRIUM
SOLUTIONS
-
14
2.1.3
THE
STANDARD
MAP
-
14
2.1.4
PROBLEMS
-
15
2.2
CHAOS
AND
LYAPUNOV
EXPONENTS
-
16
2.2.1
STABILITY,
BUTTERFLY
EFFECT,
AND
CHAOS
-
16
2.2.2
LYAPUNOV
EXPONENT
OF
THE
LOGISTIC
MAP
-
17
2.2.3
LYAPUNOV
EXPONENTS
FOR
MULTIDIMENSIONAL
MAPS
-
19
2.3
AFFINE
MAPS
AND
FRACTALS
-
22
2.3.1
SIERPINSKI
TRIANGLE
-
23
2.3.2
ABOUT
FERNS
AND
OTHER
PLANTS
-
25
2.3.3
PROBLEMS
-
26
2.4
FRACTAL
DIMENSION
-
26
2.4.1
BOX-COUNTING
-
26
2.4.2
APPLICATION:
SIERPINSKI
TRIANGLE
-
27
2.4.3
PROBLEM
-
28
2.5
NEURAL
NETWORKS
-
29
2.5.1
PERCEPTRON
-
29
2.5.2
SELF-ORGANIZED
MAPS:
KOHONEN
S
MODEL
-
36
2.5.3
PROBLEMS
-
40
BIBLIOGRAPHY
-
40
3
DYNAMICAL
SYSTEMS
-
42
3.1
QUASILINEAR
DIFFERENTIAL
EQUATIONS
-
42
3.1.1
EXAMPLE:
LOGISTIC
MAP
AND
LOGISTIC
ODE
-
44
VI
-
CONTENTS
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.3
3.3.1
3.3.2
3.3.3
PROBLEMS
-
45
FIXED
POINTS
AND
INSTABILITIES
-
45
FIXED
POINTS
-
45
STABILITY
-
45
TRAJECTORIES
-
47
GRADIENT
DYNAMICS
-
47
SPECIAL
CASE
N
=
1
-
48
SPECIAL
CASE
N
=
2
-
48
SPECIAL
CASE
N
=
3
-
50
HAMILTONIAN
SYSTEMS
-
53
HAMILTON
FUNCTION
AND
CANONICAL
EQUATIONS
-
53
SYMPLECTIC
INTEGRATORS
-
54
POINCARE
SECTION
-
60
BIBLIOGRAPHY
-
62
4
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.6
4.6.1
ORDINARY
DIFFERENTIAL
EQUATIONS
I,
INITIAL
VALUE
PROBLEMS
-
63
NEWTON
S
MECHANICS
-
63
EQUATIONS
OF
MOTION
-
63
THE
MATHEMATICAL
PENDULUM
-
64
NUMERICAL
METHODS
OF
THE
LOWEST
ORDER
-
65
EULER
METHOD
-
65
NUMERICAL
STABILITY
OF
THE
EULER
METHOD
-
67
IMPLICIT
AND
EXPLICIT
METHODS
-
68
HIGHER
ORDER
METHODS
-
69
HEUN
S
METHOD
-
70
PROBLEMS
-
73
RUNGE-KUTTA
METHOD
-
73
RK4
APPLICATIONS:
CELESTIAL
MECHANICS
-
79
KEPLER
PROBLEM:
CLOSED
ORBITS
-
79
QUASIPERIODIC
ORBITS
AND
APSIDAL
PRECESSION
-
82
MULTIPLE
PLANETS:
IS
OUR
SOLAR
SYSTEM
STABLE?
-
83
THE
REDUCED
THREE-BODY
PROBLEM
-
86
PROBLEMS
-
92
MOLECULAR
DYNAMICS
(MD)
-
93
CLASSICAL
FORMULATION
-
93
BOUNDARY
CONDITIONS
-
94
MICROCANONICAL
AND
CANONICAL
ENSEMBLE
-
95
A
SYMPLECTIC
ALGORITHM
-
96
EVALUATION
-
97
PROBLEMS
-
101
CHAOS
-
102
HARMONICALLY
DRIVEN
PENDULUM
-
103
CONTENTS
-
VII
4.6.2
4.6.3
4.6.4
4.6.5
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
POINCARE
SECTION
AND
BIFURCATION
DIAGRAMS
-
105
LYAPUNOV
EXPONENTS
-
105
FRACTAL
DIMENSION
-
115
RECONSTRUCTION
OF
ATTRACTORS
-
117
DIFFERENTIAL
EQUATIONS
WITH
PERIODIC
COEFFICIENTS
-
119
FLOQUET
THEOREM
-
119
STABILITY
OF
LIMIT
CYCLES
-
121
PARAMETRIC
INSTABILITY:
PENDULUM
WITH
AN
OSCILLATING
SUPPORT
-
121
MATHIEU
EQUATION
-
123
PROBLEMS
-
125
BIBLIOGRAPHY
-
125
5
5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.5.3
5.6
ORDINARY
DIFFERENTIAL
EQUATIONS
II,
BOUNDARY
VALUE
PROBLEMS
-
127
PRELIMINARY
REMARKS
-
127
BOUNDARY
CONDITIONS
-
127
EXAMPLE:
BALLISTIC
FLIGHT
-
128
FINITE
DIFFERENCES
-
129
DISCRETIZATION
-
129
EXAMPLE:
SCHRODINGER
EQUATION
-
132
WEIGHTED
RESIDUAL
METHODS
-
138
WEIGHT
AND
BASE
FUNCTIONS
-
138
EXAMPLE:
STARK
EFFECT
-
140
NONLINEAR
BOUNDARY
VALUE
PROBLEMS
-
142
NONLINEAR
SYSTEMS
-
143
NEWTON-RAPHSON
-
144
EXAMPLE:
THE
NONLINEAR
SCHRODINGER
EQUATION
-
145
EXAMPLE:
A
MOONSHOT
-
148
SHOOTING
-
151
THE
METHOD
-
151
EXAMPLE:
FREE
FALL
WITH
QUADRATIC
FRICTION
-
152
SYSTEMS
OF
EQUATIONS
-
154
PROBLEMS
-
155
BIBLIOGRAPHY
-
155
6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
ORDINARY
DIFFERENTIAL
EQUATIONS
III,
MEMORY,
DELAY
AND
NOISE
-
156
WHY
MEMORY?
TWO
EXAMPLES
AND
NUMERICAL
METHODS
-
156
LOGISTIC
EQUATION
-
THE
HUTCHINSON-WRIGHT
EQUATION
-
157
POINTER
METHOD
-
159
MACKEY-GLASS
EQUATION
-
160
LINEARIZED
MEMORY
EQUATIONS
AND
OSCILLATORY
INSTABILITY
-
163
STABILITY
OF
A
FIXED
POINT
-
163
ONE
EQUATION,
ONE
8-KERNEL
-
164
VIII
-
CONTENTS
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
ONE
EQUATION,
ONE
ARBITRARY
KERNEL
-
169
CHAOS
AND
LYAPUNOV
EXPONENTS
FOR
MEMORY
SYSTEMS
-
171
PROJECTION
ONTO
A
FINITE
DIMENSIONAL
SYSTEM
OF
ODES
-
171
DETERMINATION
OF
THE
LARGEST
LYAPUNOV
EXPONENT
-
171
THE
COMPLETE
LYAPUNOV
SPECTRUM
-
173
PROBLEMS
-
174
EPIDEMIC
MODELS
-
175
PREDATOR-PREY
SYSTEMS
AND
SIR
MODEL
-
175
SIRS
MODEL
-
180
SIRS
MODEL
WITH
INFECTION
RATE
CONTROL
-
183
DELAYED
INFECTION
RATE
CONTROL
-
183
PROBLEMS
-
186
NOISE
AND
STOCHASTIC
DIFFERENTIAL
EQUATIONS
-
186
BROWNIAN
MOTION
-
186
STOCHASTIC
DIFFERENTIAL
EQUATION
-
189
STOCHASTIC
DELAY
DIFFERENTIAL
EQUATION
-
191
SIRS
MODEL
WITH
DELAYED
AND
NOISY
INFECTION
RATE
CONTROL
-
191
A
MICROSCOPIC
TRAFFIC
FLOW
MODEL
-
194
THE
MODEL
-
194
THE
NONDIMENSIONAL
BASIC
SYSTEM
-
196
STATIONARY
SOLUTION
AND
LINEAR
STABILITY
ANALYSIS
-
196
THE
FULLY
NONLINEAR
SYSTEM
-
NUMERICAL
SOLUTIONS
-
199
BIBLIOGRAPHY
-
201
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.4
7.4.1
7.4.2
7.4.3
PARTIAL
DIFFERENTIAL
EQUATIONS
I,
BASICS
-
202
CLASSIFICATION
-
202
PDES
OF
THE
FIRST
ORDER
-
202
PDES
OF
THE
SECOND
ORDER
-
205
BOUNDARY
AND
INITIAL
CONDITIONS
-
207
FINITE
DIFFERENCES
-
211
DISCRETIZATION
-
211
ELLIPTIC
PDES,
EXAMPLE:
POISSON
EQUATION
-
214
PARABOLIC
PDES,
EXAMPLE:
HEAT
EQUATION
-
220
HYPERBOLIC
PDES,
EXAMPLE:
CONVECTION
EQUATION,
WAVE
EQUATION
-
226
ALTERNATIVE
DISCRETIZATION
METHODS
-
232
CHEBYSHEV
SPECTRAL
METHOD
-
233
SPECTRAL
METHOD
BY
FOURIER
TRANSFORMATION
-
238
FINITE-ELEMENT
METHOD
-
242
NONLINEAR
PDES
-
246
REAL
GINZBURG-LANDAU
EQUATION
-
247
NUMERICAL
SOLUTION,
EXPLICIT
METHOD
-
248
NUMERICAL
SOLUTION,
SEMI-IMPLICIT
METHOD
-
249
CONTENTS
-
IX
7.4.4
PROBLEMS
-
251
BIBLIOGRAPHY
-
253
8
PARTIAL
DIFFERENTIAL
EQUATIONS
II,
APPLICATIONS
-
254
8.1
QUANTUM
MECHANICS
IN
ONE
DIMENSION
-
254
8.1.1
STATIONARY
TWO-PARTICLE
EQUATION
-
254
8.1.2
TIME-DEPENDENT
SCHRODINGER
EQUATION
-
257
8.2
QUANTUM
MECHANICS
IN
TWO
DIMENSIONS
-
263
8.2.1
SCHRODINGER
EQUATION
-
264
8.2.2
ALGORITHM
-
264
8.2.3
EVALUATION
-
265
8.3
FLUID
MECHANICS:
FLOW
OF
AN
INCOMPRESSIBLE
LIQUID
-
266
8.3.1
HYDRODYNAMIC
BASIC
EQUATIONS
-
266
8.3.2
EXAMPLE:
DRIVEN
CAVITY
-
269
8.3.3
THERMAL
CONVECTION:
(A)
SQUARE
GEOMETRY
-
272
8.3.4
THERMAL
CONVECTION:
(B)
RAYLEIGH-BENARD
CONVECTION
-
281
8.4
PATTERN
FORMATION
OUT
OF
EQUILIBRIUM
-
289
8.4.1
REACTION-DIFFUSION
SYSTEMS
-
289
8.4.2
SWIFT-HOHENBERG
EQUATION
-
298
8.4.3
PROBLEMS
-
303
BIBLIOGRAPHY
-
304
9
MONTE
CARLO
METHODS
-
305
9.1
RANDOM
NUMBERS
AND
DISTRIBUTIONS
-
305
9.1.1
RANDOM
NUMBER
GENERATOR
-
305
9.1.2
DISTRIBUTION
FUNCTION,
PROBABILITY
DENSITY,
MEAN
VALUES
-
306
9.1.3
OTHER
DISTRIBUTION
FUNCTIONS
-
307
9.2
MONTE
CARLO
INTEGRATION
-
311
9.2.1
INTEGRALS
IN
ONE
DIMENSION
-
311
9.2.2
INTEGRALS
IN
HIGHER
DIMENSIONS
-
313
9.3
APPLICATIONS
FROM
STATISTICAL
PHYSICS
-
315
9.3.1
TWO-DIMENSIONAL
CLASSICAL
GAS
-
316
9.3.2
THE
ISING
MODEL
-
322
9.4
DIFFERENTIAL
EQUATIONS
DERIVED
FROM
VARIATIONAL
PROBLEMS
-
332
9.4.1
DIFFUSION
EQUATION
-
332
9.4.2
SWIFT-HOHENBERG
EQUATION
-
334
BIBLIOGRAPHY
-
335
A
MATRICES
AND
SYSTEMS
OF
LINEAR
EQUATIONS
-
337
A.1
REAL-VALUED
MATRICES
-
337
A.1.1
EIGENVALUES
AND
EIGENVECTORS
-
337
A.1.2
CHARACTERISTIC
POLYNOMIAL
-
337
X
-
CONTENTS
A.1.
3
A.1
.4
A.2
A.2.1
A.2.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4
A.4.1
A.4.2
A.4.3
NOTATIONS
-
338
NORMAL
MATRICES
-
338
COMPLEX-VALUED
MATRICES
-
339
NOTATIONS
-
339
JORDAN
CANONICAL
FORM
-
340
INHOMOGENEOUS
SYSTEMS
OF
LINEAR
EQUATIONS
-
341
REGULAR
AND
SINGULAR
SYSTEM
MATRICES
-
341
FREDHOLM
ALTERNATIVE
-
342
REGULAR
MATRICES
-
343
LU
DECOMPOSITION
-
343
THOMAS
ALGORITHM
-
346
HOMOGENEOUS
SYSTEMS
OF
LINEAR
EQUATIONS
-
347
EIGENVALUE
PROBLEMS
-
347
DIAGONALIZATION
-
347
APPLICATION:
ZEROS
OF
A
POLYNOMIAL
-
350
BIBLIOGRAPHY
-
351
B
B.1
B.2
B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9
PROGRAM
LIBRARY
-
353
ROUTINES
-
353
GRAPHICS
-
354
INIT
-
354
CONTUR
-
354
CONTURL
-
354
CCONTU
-
355
IMAGE
-
355
CCIRCL
-
355
RUNGE-KUTTA
-
355
RKG
-
355
DRKG
-
356
DRKADT
-
356
RKG_DEL
-
356
MISCELLANEOUS
-
356
TRIDAG
-
THOMAS
ALGORITHM
-
356
CTRIDA
-
357
DLYAP_EXP
-
LYAPUNOV
EXPONENTS
-
357
DLYAP_DEL
-
LARGEST
LYAPUNOV
EXPONENT
OF
DELAY-SYSTEM
-
357
DLYAP_EXP_DEL
-
LYAPUNOV
EXPONENTS
OF
DELAY-SYSTEM
-
358
SCHMID
-
ORTHOGONALIZATION
-
358
FUNCTION
VOLUM
-
VOLUME
IN
N
DIMENSIONS
-
359
FUNCTION
DETER
-
DETERMINANT
-
359
RANDOM_INIT
-
RANDOM
NUMBERS
-
359
CONTENTS
-
XI
INDEX
-
393
C
C.1
C.2
C.3
C.4
C.5
C.6
C.7
C.8
SOLUTIONS
OF
THE
PROBLEMS
-
361
CHAPTER
1
-
361
CHAPTER
2
-
362
CHAPTER
3
-
362
CHAPTER
4
-
364
CHAPTER
5
-
374
CHAPTER
6
-
376
CHAPTER?
-
378
CHAPTERS
-
382
D
D.1
D.2
D.2.1
D.2.2
D.2.3
README
AND
A
SHORT
GUIDE
TO
FE-TOOLS
-
387
README
-----387
SHORT
GUIDE
TO
FINITE-ELEMENT
TOOLS
FROM
CHAPTER
7
-
390
MESH_GENERATOR
-
390
LAPLACE_SOLVER
-
391
GRID_CONTUR
-
392
|
adam_txt |
CONTENTS
1
INTRODUCTION
-
1
1.1
GOAL,
CONTENTS,
AND
OUTLINE
-
1
1.2
THE
ENVIRONMENT
REQUIRED
FOR
PROGRAM
DEVELOPMENT
-
5
1.2.1
OPERATING
SYSTEM
-
5
1.2.2
SOFTWARE
PACKAGES
-
6
1.2.3
GRAPHICS
-
6
1.2.4
PROGRAM
DEVELOPMENT
AND
A
SIMPLE
SCRIPT
-
6
1.3
A
FIRST
EXAMPLE
-
THE
LOGISTIC
MAP
-
7
1.3.1
MAP
-
7
1.3.2
FORTRAN
----
9
1.3.3
PROBLEMS
-
12
BIBLIOGRAPHY
-
12
2
NONLINEAR
MAPS
-
13
2.1
FRENKEL-KOTOROVA
MODEL
-
13
2.1.1
CLASSICAL
FORMULATION
-
13
2.1.2
EQUILIBRIUM
SOLUTIONS
-
14
2.1.3
THE
STANDARD
MAP
-
14
2.1.4
PROBLEMS
-
15
2.2
CHAOS
AND
LYAPUNOV
EXPONENTS
-
16
2.2.1
STABILITY,
BUTTERFLY
EFFECT,
AND
CHAOS
-
16
2.2.2
LYAPUNOV
EXPONENT
OF
THE
LOGISTIC
MAP
-
17
2.2.3
LYAPUNOV
EXPONENTS
FOR
MULTIDIMENSIONAL
MAPS
-
19
2.3
AFFINE
MAPS
AND
FRACTALS
-
22
2.3.1
SIERPINSKI
TRIANGLE
-
23
2.3.2
ABOUT
FERNS
AND
OTHER
PLANTS
-
25
2.3.3
PROBLEMS
-
26
2.4
FRACTAL
DIMENSION
-
26
2.4.1
BOX-COUNTING
-
26
2.4.2
APPLICATION:
SIERPINSKI
TRIANGLE
-
27
2.4.3
PROBLEM
-
28
2.5
NEURAL
NETWORKS
-
29
2.5.1
PERCEPTRON
-
29
2.5.2
SELF-ORGANIZED
MAPS:
KOHONEN
'
S
MODEL
-
36
2.5.3
PROBLEMS
-
40
BIBLIOGRAPHY
-
40
3
DYNAMICAL
SYSTEMS
-
42
3.1
QUASILINEAR
DIFFERENTIAL
EQUATIONS
-
42
3.1.1
EXAMPLE:
LOGISTIC
MAP
AND
LOGISTIC
ODE
-
44
VI
-
CONTENTS
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.3
3.3.1
3.3.2
3.3.3
PROBLEMS
-
45
FIXED
POINTS
AND
INSTABILITIES
-
45
FIXED
POINTS
-
45
STABILITY
-
45
TRAJECTORIES
-
47
GRADIENT
DYNAMICS
-
47
SPECIAL
CASE
N
=
1
-
48
SPECIAL
CASE
N
=
2
-
48
SPECIAL
CASE
N
=
3
-
50
HAMILTONIAN
SYSTEMS
-
53
HAMILTON
FUNCTION
AND
CANONICAL
EQUATIONS
-
53
SYMPLECTIC
INTEGRATORS
-
54
POINCARE
SECTION
-
60
BIBLIOGRAPHY
-
62
4
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.6
4.6.1
ORDINARY
DIFFERENTIAL
EQUATIONS
I,
INITIAL
VALUE
PROBLEMS
-
63
NEWTON
'
S
MECHANICS
-
63
EQUATIONS
OF
MOTION
-
63
THE
MATHEMATICAL
PENDULUM
-
64
NUMERICAL
METHODS
OF
THE
LOWEST
ORDER
-
65
EULER
METHOD
-
65
NUMERICAL
STABILITY
OF
THE
EULER
METHOD
-
67
IMPLICIT
AND
EXPLICIT
METHODS
-
68
HIGHER
ORDER
METHODS
-
69
HEUN
'
S
METHOD
-
70
PROBLEMS
-
73
RUNGE-KUTTA
METHOD
-
73
RK4
APPLICATIONS:
CELESTIAL
MECHANICS
-
79
KEPLER
PROBLEM:
CLOSED
ORBITS
-
79
QUASIPERIODIC
ORBITS
AND
APSIDAL
PRECESSION
-
82
MULTIPLE
PLANETS:
IS
OUR
SOLAR
SYSTEM
STABLE?
-
83
THE
REDUCED
THREE-BODY
PROBLEM
-
86
PROBLEMS
-
92
MOLECULAR
DYNAMICS
(MD)
-
93
CLASSICAL
FORMULATION
-
93
BOUNDARY
CONDITIONS
-
94
MICROCANONICAL
AND
CANONICAL
ENSEMBLE
-
95
A
SYMPLECTIC
ALGORITHM
-
96
EVALUATION
-
97
PROBLEMS
-
101
CHAOS
-
102
HARMONICALLY
DRIVEN
PENDULUM
-
103
CONTENTS
-
VII
4.6.2
4.6.3
4.6.4
4.6.5
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
POINCARE
SECTION
AND
BIFURCATION
DIAGRAMS
-
105
LYAPUNOV
EXPONENTS
-
105
FRACTAL
DIMENSION
-
115
RECONSTRUCTION
OF
ATTRACTORS
-
117
DIFFERENTIAL
EQUATIONS
WITH
PERIODIC
COEFFICIENTS
-
119
FLOQUET
THEOREM
-
119
STABILITY
OF
LIMIT
CYCLES
-
121
PARAMETRIC
INSTABILITY:
PENDULUM
WITH
AN
OSCILLATING
SUPPORT
-
121
MATHIEU
EQUATION
-
123
PROBLEMS
-
125
BIBLIOGRAPHY
-
125
5
5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.5
5.5.1
5.5.2
5.5.3
5.6
ORDINARY
DIFFERENTIAL
EQUATIONS
II,
BOUNDARY
VALUE
PROBLEMS
-
127
PRELIMINARY
REMARKS
-
127
BOUNDARY
CONDITIONS
-
127
EXAMPLE:
BALLISTIC
FLIGHT
-
128
FINITE
DIFFERENCES
-
129
DISCRETIZATION
-
129
EXAMPLE:
SCHRODINGER
EQUATION
-
132
WEIGHTED
RESIDUAL
METHODS
-
138
WEIGHT
AND
BASE
FUNCTIONS
-
138
EXAMPLE:
STARK
EFFECT
-
140
NONLINEAR
BOUNDARY
VALUE
PROBLEMS
-
142
NONLINEAR
SYSTEMS
-
143
NEWTON-RAPHSON
-
144
EXAMPLE:
THE
NONLINEAR
SCHRODINGER
EQUATION
-
145
EXAMPLE:
A
MOONSHOT
-
148
SHOOTING
-
151
THE
METHOD
-
151
EXAMPLE:
FREE
FALL
WITH
QUADRATIC
FRICTION
-
152
SYSTEMS
OF
EQUATIONS
-
154
PROBLEMS
-
155
BIBLIOGRAPHY
-
155
6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
ORDINARY
DIFFERENTIAL
EQUATIONS
III,
MEMORY,
DELAY
AND
NOISE
-
156
WHY
MEMORY?
TWO
EXAMPLES
AND
NUMERICAL
METHODS
-
156
LOGISTIC
EQUATION
-
THE
HUTCHINSON-WRIGHT
EQUATION
-
157
POINTER
METHOD
-
159
MACKEY-GLASS
EQUATION
-
160
LINEARIZED
MEMORY
EQUATIONS
AND
OSCILLATORY
INSTABILITY
-
163
STABILITY
OF
A
FIXED
POINT
-
163
ONE
EQUATION,
ONE
8-KERNEL
-
164
VIII
-
CONTENTS
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
ONE
EQUATION,
ONE
ARBITRARY
KERNEL
-
169
CHAOS
AND
LYAPUNOV
EXPONENTS
FOR
MEMORY
SYSTEMS
-
171
PROJECTION
ONTO
A
FINITE
DIMENSIONAL
SYSTEM
OF
ODES
-
171
DETERMINATION
OF
THE
LARGEST
LYAPUNOV
EXPONENT
-
171
THE
COMPLETE
LYAPUNOV
SPECTRUM
-
173
PROBLEMS
-
174
EPIDEMIC
MODELS
-
175
PREDATOR-PREY
SYSTEMS
AND
SIR
MODEL
-
175
SIRS
MODEL
-
180
SIRS
MODEL
WITH
INFECTION
RATE
CONTROL
-
183
DELAYED
INFECTION
RATE
CONTROL
-
183
PROBLEMS
-
186
NOISE
AND
STOCHASTIC
DIFFERENTIAL
EQUATIONS
-
186
BROWNIAN
MOTION
-
186
STOCHASTIC
DIFFERENTIAL
EQUATION
-
189
STOCHASTIC
DELAY
DIFFERENTIAL
EQUATION
-
191
SIRS
MODEL
WITH
DELAYED
AND
NOISY
INFECTION
RATE
CONTROL
-
191
A
MICROSCOPIC
TRAFFIC
FLOW
MODEL
-
194
THE
MODEL
-
194
THE
NONDIMENSIONAL
BASIC
SYSTEM
-
196
STATIONARY
SOLUTION
AND
LINEAR
STABILITY
ANALYSIS
-
196
THE
FULLY
NONLINEAR
SYSTEM
-
NUMERICAL
SOLUTIONS
-
199
BIBLIOGRAPHY
-
201
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.4
7.4.1
7.4.2
7.4.3
PARTIAL
DIFFERENTIAL
EQUATIONS
I,
BASICS
-
202
CLASSIFICATION
-
202
PDES
OF
THE
FIRST
ORDER
-
202
PDES
OF
THE
SECOND
ORDER
-
205
BOUNDARY
AND
INITIAL
CONDITIONS
-
207
FINITE
DIFFERENCES
-
211
DISCRETIZATION
-
211
ELLIPTIC
PDES,
EXAMPLE:
POISSON
EQUATION
-
214
PARABOLIC
PDES,
EXAMPLE:
HEAT
EQUATION
-
220
HYPERBOLIC
PDES,
EXAMPLE:
CONVECTION
EQUATION,
WAVE
EQUATION
-
226
ALTERNATIVE
DISCRETIZATION
METHODS
-
232
CHEBYSHEV
SPECTRAL
METHOD
-
233
SPECTRAL
METHOD
BY
FOURIER
TRANSFORMATION
-
238
FINITE-ELEMENT
METHOD
-
242
NONLINEAR
PDES
-
246
REAL
GINZBURG-LANDAU
EQUATION
-
247
NUMERICAL
SOLUTION,
EXPLICIT
METHOD
-
248
NUMERICAL
SOLUTION,
SEMI-IMPLICIT
METHOD
-
249
CONTENTS
-
IX
7.4.4
PROBLEMS
-
251
BIBLIOGRAPHY
-
253
8
PARTIAL
DIFFERENTIAL
EQUATIONS
II,
APPLICATIONS
-
254
8.1
QUANTUM
MECHANICS
IN
ONE
DIMENSION
-
254
8.1.1
STATIONARY
TWO-PARTICLE
EQUATION
-
254
8.1.2
TIME-DEPENDENT
SCHRODINGER
EQUATION
-
257
8.2
QUANTUM
MECHANICS
IN
TWO
DIMENSIONS
-
263
8.2.1
SCHRODINGER
EQUATION
-
264
8.2.2
ALGORITHM
-
264
8.2.3
EVALUATION
-
265
8.3
FLUID
MECHANICS:
FLOW
OF
AN
INCOMPRESSIBLE
LIQUID
-
266
8.3.1
HYDRODYNAMIC
BASIC
EQUATIONS
-
266
8.3.2
EXAMPLE:
DRIVEN
CAVITY
-
269
8.3.3
THERMAL
CONVECTION:
(A)
SQUARE
GEOMETRY
-
272
8.3.4
THERMAL
CONVECTION:
(B)
RAYLEIGH-BENARD
CONVECTION
-
281
8.4
PATTERN
FORMATION
OUT
OF
EQUILIBRIUM
-
289
8.4.1
REACTION-DIFFUSION
SYSTEMS
-
289
8.4.2
SWIFT-HOHENBERG
EQUATION
-
298
8.4.3
PROBLEMS
-
303
BIBLIOGRAPHY
-
304
9
MONTE
CARLO
METHODS
-
305
9.1
RANDOM
NUMBERS
AND
DISTRIBUTIONS
-
305
9.1.1
RANDOM
NUMBER
GENERATOR
-
305
9.1.2
DISTRIBUTION
FUNCTION,
PROBABILITY
DENSITY,
MEAN
VALUES
-
306
9.1.3
OTHER
DISTRIBUTION
FUNCTIONS
-
307
9.2
MONTE
CARLO
INTEGRATION
-
311
9.2.1
INTEGRALS
IN
ONE
DIMENSION
-
311
9.2.2
INTEGRALS
IN
HIGHER
DIMENSIONS
-
313
9.3
APPLICATIONS
FROM
STATISTICAL
PHYSICS
-
315
9.3.1
TWO-DIMENSIONAL
CLASSICAL
GAS
-
316
9.3.2
THE
ISING
MODEL
-
322
9.4
DIFFERENTIAL
EQUATIONS
DERIVED
FROM
VARIATIONAL
PROBLEMS
-
332
9.4.1
DIFFUSION
EQUATION
-
332
9.4.2
SWIFT-HOHENBERG
EQUATION
-
334
BIBLIOGRAPHY
-
335
A
MATRICES
AND
SYSTEMS
OF
LINEAR
EQUATIONS
-
337
A.1
REAL-VALUED
MATRICES
-
337
A.1.1
EIGENVALUES
AND
EIGENVECTORS
-
337
A.1.2
CHARACTERISTIC
POLYNOMIAL
-
337
X
-
CONTENTS
A.1.
3
A.1
.4
A.2
A.2.1
A.2.2
A.3
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5
A.4
A.4.1
A.4.2
A.4.3
NOTATIONS
-
338
NORMAL
MATRICES
-
338
COMPLEX-VALUED
MATRICES
-
339
NOTATIONS
-
339
JORDAN
CANONICAL
FORM
-
340
INHOMOGENEOUS
SYSTEMS
OF
LINEAR
EQUATIONS
-
341
REGULAR
AND
SINGULAR
SYSTEM
MATRICES
-
341
FREDHOLM
ALTERNATIVE
-
342
REGULAR
MATRICES
-
343
LU
DECOMPOSITION
-
343
THOMAS
ALGORITHM
-
346
HOMOGENEOUS
SYSTEMS
OF
LINEAR
EQUATIONS
-
347
EIGENVALUE
PROBLEMS
-
347
DIAGONALIZATION
-
347
APPLICATION:
ZEROS
OF
A
POLYNOMIAL
-
350
BIBLIOGRAPHY
-
351
B
B.1
B.2
B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.4
B.4.1
B.4.2
B.4.3
B.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9
PROGRAM
LIBRARY
-
353
ROUTINES
-
353
GRAPHICS
-
354
INIT
-
354
CONTUR
-
354
CONTURL
-
354
CCONTU
-
355
IMAGE
-
355
CCIRCL
-
355
RUNGE-KUTTA
-
355
RKG
-
355
DRKG
-
356
DRKADT
-
356
RKG_DEL
-
356
MISCELLANEOUS
-
356
TRIDAG
-
THOMAS
ALGORITHM
-
356
CTRIDA
-
357
DLYAP_EXP
-
LYAPUNOV
EXPONENTS
-
357
DLYAP_DEL
-
LARGEST
LYAPUNOV
EXPONENT
OF
DELAY-SYSTEM
-
357
DLYAP_EXP_DEL
-
LYAPUNOV
EXPONENTS
OF
DELAY-SYSTEM
-
358
SCHMID
-
ORTHOGONALIZATION
-
358
FUNCTION
VOLUM
-
VOLUME
IN
N
DIMENSIONS
-
359
FUNCTION
DETER
-
DETERMINANT
-
359
RANDOM_INIT
-
RANDOM
NUMBERS
-
359
CONTENTS
-
XI
INDEX
-
393
C
C.1
C.2
C.3
C.4
C.5
C.6
C.7
C.8
SOLUTIONS
OF
THE
PROBLEMS
-
361
CHAPTER
1
-
361
CHAPTER
2
-
362
CHAPTER
3
-
362
CHAPTER
4
-
364
CHAPTER
5
-
374
CHAPTER
6
-
376
CHAPTER?
-
378
CHAPTERS
-
382
D
D.1
D.2
D.2.1
D.2.2
D.2.3
README
AND
A
SHORT
GUIDE
TO
FE-TOOLS
-
387
README
-----387
SHORT
GUIDE
TO
FINITE-ELEMENT
TOOLS
FROM
CHAPTER
7
-
390
MESH_GENERATOR
-
390
LAPLACE_SOLVER
-
391
GRID_CONTUR
-
392 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bestehorn, Michael 1957- |
author_GND | (DE-588)112842763 |
author_facet | Bestehorn, Michael 1957- |
author_role | aut |
author_sort | Bestehorn, Michael 1957- |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV048935865 |
classification_rvk | UC 600 SK 955 ST 630 |
ctrlnum | (OCoLC)1385299555 (DE-599)DNB1275630839 |
discipline | Physik Informatik Mathematik |
discipline_str_mv | Physik Informatik Mathematik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02455nam a2200601 c 4500</leader><controlfield tag="001">BV048935865</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230509s2023 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N51</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1275630839</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110782363</subfield><subfield code="c">: EUR 74.95 (DE) (freier Preis), EUR 74.95 (AT) (freier Preis)</subfield><subfield code="9">978-3-11-078236-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110782363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1385299555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1275630839</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UC 600</subfield><subfield code="0">(DE-625)145524:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 955</subfield><subfield code="0">(DE-625)143274:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bestehorn, Michael</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112842763</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational physics</subfield><subfield code="b">with worked out examples in FORTRAN and MATLAB</subfield><subfield code="c">Michael Bestehorn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 396 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter graduate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential Equations with Memory and Delay</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differentialgleichungen mit Speicher und Verzögerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gewöhnliche Differentialgleichungen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monte Carlo Integration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monte Carlo methods</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ordinary differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partielle Differentialgleichungen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TB: Textbook</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-078252-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-078266-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">https://www.degruyter.com/isbn/9783110782363</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034199723&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034199723</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV048935865 |
illustrated | Illustrated |
index_date | 2024-07-03T21:58:14Z |
indexdate | 2024-07-10T09:50:22Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110782363 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034199723 |
oclc_num | 1385299555 |
open_access_boolean | |
owner | DE-29T DE-11 DE-83 DE-703 DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-29T DE-11 DE-83 DE-703 DE-19 DE-BY-UBM DE-20 |
physical | XI, 396 Seiten Illustrationen, Diagramme 24 cm x 17 cm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter graduate |
spelling | Bestehorn, Michael 1957- Verfasser (DE-588)112842763 aut Computational physics with worked out examples in FORTRAN and MATLAB Michael Bestehorn 2nd edition Berlin ; Boston De Gruyter [2023] © 2023 XI, 396 Seiten Illustrationen, Diagramme 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter graduate Computerphysik (DE-588)4273564-6 gnd rswk-swf Differential Equations with Memory and Delay Differentialgleichungen mit Speicher und Verzögerung Gewöhnliche Differentialgleichungen Monte Carlo Integration Monte Carlo methods Ordinary differential equations Partial differential equations Partielle Differentialgleichungen TB: Textbook (DE-588)4123623-3 Lehrbuch gnd-content Computerphysik (DE-588)4273564-6 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-11-078252-3 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-078266-0 X:MVB https://www.degruyter.com/isbn/9783110782363 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034199723&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bestehorn, Michael 1957- Computational physics with worked out examples in FORTRAN and MATLAB Computerphysik (DE-588)4273564-6 gnd |
subject_GND | (DE-588)4273564-6 (DE-588)4123623-3 |
title | Computational physics with worked out examples in FORTRAN and MATLAB |
title_auth | Computational physics with worked out examples in FORTRAN and MATLAB |
title_exact_search | Computational physics with worked out examples in FORTRAN and MATLAB |
title_exact_search_txtP | Computational physics with worked out examples in FORTRAN and MATLAB |
title_full | Computational physics with worked out examples in FORTRAN and MATLAB Michael Bestehorn |
title_fullStr | Computational physics with worked out examples in FORTRAN and MATLAB Michael Bestehorn |
title_full_unstemmed | Computational physics with worked out examples in FORTRAN and MATLAB Michael Bestehorn |
title_short | Computational physics |
title_sort | computational physics with worked out examples in fortran and matlab |
title_sub | with worked out examples in FORTRAN and MATLAB |
topic | Computerphysik (DE-588)4273564-6 gnd |
topic_facet | Computerphysik Lehrbuch |
url | https://www.degruyter.com/isbn/9783110782363 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034199723&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bestehornmichael computationalphysicswithworkedoutexamplesinfortranandmatlab AT walterdegruytergmbhcokg computationalphysicswithworkedoutexamplesinfortranandmatlab |