Mathematics of deep learning: an introduction
The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
|
Schriftenreihe: | De Gruyter textbook
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHI01 FHM01 FHR01 FKE01 FLA01 FWS01 FWS02 TUM01 UBW01 UBY01 UPA01 URL des Erstveröffentlichers |
Zusammenfassung: | The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point of view that emphasizes the underlying mathematical ideas. We believe that a more foundational perspective will help to answer important questions that have only received empirical answers so far. The material is based on a one-semester course Introduction to Mathematics of Deep Learning" for senior undergraduate mathematics majors and first year graduate students in mathematics. Our goal is to introduce basic concepts from deep learning in a rigorous mathematical fashion, e.g introduce mathematical definitions of deep neural networks (DNNs), loss functions, the backpropagation algorithm, etc. We attempt to identify for each concept the simplest setting that minimizes technicalities but still contains the key mathematics. |
Beschreibung: | 1 Online-Ressource (VI, 126 Seiten) Illustrationen |
ISBN: | 9783111025551 9783111025803 |
DOI: | 10.1515/9783111025551 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048930313 | ||
003 | DE-604 | ||
005 | 20231127 | ||
007 | cr|uuu---uuuuu | ||
008 | 230505s2023 |||| o||u| ||||||eng d | ||
020 | |a 9783111025551 |c PDF |9 978-3-11-102555-1 | ||
020 | |a 9783111025803 |c EPUB |9 978-3-11-102580-3 | ||
024 | 7 | |a 10.1515/9783111025551 |2 doi | |
035 | |a (ZDB-23-DGG)9783111025551 | ||
035 | |a (ZDB-23-DEI)9783111025551 | ||
035 | |a (OCoLC)1378501609 | ||
035 | |a (DE-599)BVBBV048930313 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-573 |a DE-M347 |a DE-706 |a DE-20 |a DE-863 |a DE-862 |a DE-898 |a DE-11 | ||
082 | 0 | |a 006.31 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a TEC 000 |2 stub | ||
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Berlyand, Leonid |e Verfasser |0 (DE-588)1029933812 |4 aut | |
245 | 1 | 0 | |a Mathematics of deep learning |b an introduction |c Leonid Berlyand and Pierre-Emmanuel Jabin |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (VI, 126 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter textbook | |
520 | |a The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point of view that emphasizes the underlying mathematical ideas. We believe that a more foundational perspective will help to answer important questions that have only received empirical answers so far. The material is based on a one-semester course Introduction to Mathematics of Deep Learning" for senior undergraduate mathematics majors and first year graduate students in mathematics. Our goal is to introduce basic concepts from deep learning in a rigorous mathematical fashion, e.g introduce mathematical definitions of deep neural networks (DNNs), loss functions, the backpropagation algorithm, etc. We attempt to identify for each concept the simplest setting that minimizes technicalities but still contains the key mathematics. | ||
650 | 4 | |a Faltungsneuronale Netze | |
650 | 4 | |a Künstliche Neuronale Netze | |
650 | 4 | |a Maschinelles Lernen | |
650 | 4 | |a Tiefes Lernen | |
650 | 7 | |a COMPUTERS / Intelligence (AI) & Semantics |2 bisacsh | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 3 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 4 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Jabin, Pierre-Emmanuel |e Verfasser |0 (DE-588)1291629130 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-102431-8 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783111025551 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DEI |a ZDB-23-DIE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034194279 | ||
966 | e | |u https://doi.org/10.1515/9783111025551 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FHI01 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FHM01 |p ZDB-23-DIE |q FHM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/document/doi/10.1515/9783111025551/pdf |l FHR01 |p ZDB-23-DEI |q ZDB-23-DEI_PuC23 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FWS01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l FWS02 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l TUM01 |p ZDB-23-DEI |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l UBW01 |p ZDB-23-DGG |q UBW_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l UBY01 |p ZDB-23-DEI |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111025551 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1041615 |
---|---|
_version_ | 1806175210357915648 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Berlyand, Leonid Jabin, Pierre-Emmanuel |
author_GND | (DE-588)1029933812 (DE-588)1291629130 |
author_facet | Berlyand, Leonid Jabin, Pierre-Emmanuel |
author_role | aut aut |
author_sort | Berlyand, Leonid |
author_variant | l b lb p e j pej |
building | Verbundindex |
bvnumber | BV048930313 |
classification_rvk | ST 301 |
classification_tum | TEC 000 DAT 000 |
collection | ZDB-23-DGG ZDB-23-DEI ZDB-23-DIE |
ctrlnum | (ZDB-23-DGG)9783111025551 (ZDB-23-DEI)9783111025551 (OCoLC)1378501609 (DE-599)BVBBV048930313 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Technik Informatik |
discipline_str_mv | Technik Informatik |
doi_str_mv | 10.1515/9783111025551 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05083nmm a2200805zc 4500</leader><controlfield tag="001">BV048930313</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231127 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111025551</subfield><subfield code="c">PDF</subfield><subfield code="9">978-3-11-102555-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111025803</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-3-11-102580-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783111025551</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783111025551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DEI)9783111025551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1378501609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048930313</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TEC 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berlyand, Leonid</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1029933812</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics of deep learning</subfield><subfield code="b">an introduction</subfield><subfield code="c">Leonid Berlyand and Pierre-Emmanuel Jabin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 126 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter textbook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The goal of this book is to provide a mathematical perspective on some key elements of the so-called deep neural networks (DNNs). Much of the interest in deep learning has focused on the implementation of DNN-based algorithms. Our hope is that this compact textbook will offer a complementary point of view that emphasizes the underlying mathematical ideas. We believe that a more foundational perspective will help to answer important questions that have only received empirical answers so far. The material is based on a one-semester course Introduction to Mathematics of Deep Learning" for senior undergraduate mathematics majors and first year graduate students in mathematics. Our goal is to introduce basic concepts from deep learning in a rigorous mathematical fashion, e.g introduce mathematical definitions of deep neural networks (DNNs), loss functions, the backpropagation algorithm, etc. We attempt to identify for each concept the simplest setting that minimizes technicalities but still contains the key mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faltungsneuronale Netze</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Neuronale Netze</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maschinelles Lernen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tiefes Lernen</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Intelligence (AI) & Semantics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jabin, Pierre-Emmanuel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1291629130</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-102431-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DEI</subfield><subfield code="a">ZDB-23-DIE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034194279</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-23-DIE</subfield><subfield code="q">FHM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/document/doi/10.1515/9783111025551/pdf</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">ZDB-23-DEI_PuC23</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DEI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111025551</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048930313 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:57:01Z |
indexdate | 2024-08-01T11:01:48Z |
institution | BVB |
isbn | 9783111025551 9783111025803 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034194279 |
oclc_num | 1378501609 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-573 DE-M347 DE-706 DE-20 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-898 DE-BY-UBR DE-11 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-573 DE-M347 DE-706 DE-20 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-898 DE-BY-UBR DE-11 |
physical | 1 Online-Ressource (VI, 126 Seiten) Illustrationen |
psigel | ZDB-23-DGG ZDB-23-DEI ZDB-23-DIE ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DIE FHM_Einzelkauf ZDB-23-DEI ZDB-23-DEI_PuC23 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DEI TUM_Paketkauf_2023 ZDB-23-DGG UBW_Einzelkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter textbook |
spellingShingle | Berlyand, Leonid Jabin, Pierre-Emmanuel Mathematics of deep learning an introduction Faltungsneuronale Netze Künstliche Neuronale Netze Maschinelles Lernen Tiefes Lernen COMPUTERS / Intelligence (AI) & Semantics bisacsh Neuronales Netz (DE-588)4226127-2 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Deep learning (DE-588)1135597375 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4142443-8 (DE-588)1135597375 (DE-588)4033447-8 (DE-588)4193754-5 |
title | Mathematics of deep learning an introduction |
title_auth | Mathematics of deep learning an introduction |
title_exact_search | Mathematics of deep learning an introduction |
title_exact_search_txtP | Mathematics of deep learning an introduction |
title_full | Mathematics of deep learning an introduction Leonid Berlyand and Pierre-Emmanuel Jabin |
title_fullStr | Mathematics of deep learning an introduction Leonid Berlyand and Pierre-Emmanuel Jabin |
title_full_unstemmed | Mathematics of deep learning an introduction Leonid Berlyand and Pierre-Emmanuel Jabin |
title_short | Mathematics of deep learning |
title_sort | mathematics of deep learning an introduction |
title_sub | an introduction |
topic | Faltungsneuronale Netze Künstliche Neuronale Netze Maschinelles Lernen Tiefes Lernen COMPUTERS / Intelligence (AI) & Semantics bisacsh Neuronales Netz (DE-588)4226127-2 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Deep learning (DE-588)1135597375 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Faltungsneuronale Netze Künstliche Neuronale Netze Maschinelles Lernen Tiefes Lernen COMPUTERS / Intelligence (AI) & Semantics Neuronales Netz Angewandte Mathematik Deep learning Künstliche Intelligenz |
url | https://doi.org/10.1515/9783111025551 |
work_keys_str_mv | AT berlyandleonid mathematicsofdeeplearninganintroduction AT jabinpierreemmanuel mathematicsofdeeplearninganintroduction |