Finite difference methods for nonlinear evolution equations:
Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2023]
Science Press |
Schriftenreihe: | De Gruyter series in applied and numerical mathematics
volume 8 |
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FKE01 FLA01 TUM01 UBW01 UBY01 UPA01 Volltext |
Zusammenfassung: | Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines. |
Beschreibung: | 1 Online-Ressource (XIV, 418 Seiten) |
ISBN: | 9783110796018 9783110796117 |
DOI: | 10.1515/9783110796018 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048930301 | ||
003 | DE-604 | ||
005 | 20231121 | ||
007 | cr|uuu---uuuuu | ||
008 | 230505s2023 |||| o||u| ||||||eng d | ||
020 | |a 9783110796018 |9 978-3-11-079601-8 | ||
020 | |a 9783110796117 |9 978-3-11-079611-7 | ||
024 | 7 | |a 10.1515/9783110796018 |2 doi | |
035 | |a (ZDB-23-DGG)9783110796018 | ||
035 | |a (ZDB-23-DMA)9783110796018 | ||
035 | |a (OCoLC)1378502179 | ||
035 | |a (DE-599)BVBBV048930301 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-20 |a DE-11 |a DE-706 | ||
082 | 0 | |a 515.353 | |
084 | |a SK 580 |0 (DE-625)143247: |2 rvk | ||
084 | |a MAT 673 |2 stub | ||
100 | 1 | |a Sun, Zhi-zhong |d 1963- |e Verfasser |0 (DE-588)1100560432 |4 aut | |
245 | 1 | 0 | |a Finite difference methods for nonlinear evolution equations |c Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2023] | |
264 | 1 | |b Science Press | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (XIV, 418 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in applied and numerical mathematics |v volume 8 | |
520 | |a Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines. | ||
650 | 4 | |a Differentialgleichung | |
650 | 4 | |a Finite-Differenzen-Methoden | |
650 | 4 | |a Finites Element | |
650 | 4 | |a Nichtlineare Gleichnugan | |
650 | 7 | |a MATHEMATICS / Numerical Analysis |2 bisacsh | |
700 | 1 | |a Zhang, Qifeng |d 1987- |e Verfasser |0 (DE-588)1292167025 |4 aut | |
700 | 1 | |a Gao, Guang-hua |d 1985- |e Verfasser |0 (DE-588)1217419950 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-079585-1 |
830 | 0 | |a De Gruyter series in applied and numerical mathematics |v volume 8 |w (DE-604)BV044780808 |9 8 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110796018 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034194267 | ||
966 | e | |u https://doi.org/10.1515/9783110796018 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l UBW01 |p ZDB-23-DMA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l UBY01 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110796018 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185121629143040 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- |
author_GND | (DE-588)1100560432 (DE-588)1292167025 (DE-588)1217419950 |
author_facet | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- |
author_role | aut aut aut |
author_sort | Sun, Zhi-zhong 1963- |
author_variant | z z s zzs q z qz g h g ghg |
building | Verbundindex |
bvnumber | BV048930301 |
classification_rvk | SK 580 |
classification_tum | MAT 673 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110796018 (ZDB-23-DMA)9783110796018 (OCoLC)1378502179 (DE-599)BVBBV048930301 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9783110796018 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04007nmm a2200637zcb4500</leader><controlfield tag="001">BV048930301</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231121 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230505s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110796018</subfield><subfield code="9">978-3-11-079601-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110796117</subfield><subfield code="9">978-3-11-079611-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110796018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110796018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DMA)9783110796018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1378502179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048930301</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 580</subfield><subfield code="0">(DE-625)143247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 673</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Zhi-zhong</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1100560432</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite difference methods for nonlinear evolution equations</subfield><subfield code="c">Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Science Press</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 418 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">volume 8</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentialgleichung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-Differenzen-Methoden</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finites Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nichtlineare Gleichnugan</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qifeng</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1292167025</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Guang-hua</subfield><subfield code="d">1985-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1217419950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-079585-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in applied and numerical mathematics</subfield><subfield code="v">volume 8</subfield><subfield code="w">(DE-604)BV044780808</subfield><subfield code="9">8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034194267</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110796018</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048930301 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:57:01Z |
indexdate | 2024-07-10T09:50:12Z |
institution | BVB |
isbn | 9783110796018 9783110796117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034194267 |
oclc_num | 1378502179 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-20 DE-11 DE-706 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-20 DE-11 DE-706 |
physical | 1 Online-Ressource (XIV, 418 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2023 ZDB-23-DMA UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | De Gruyter Science Press |
record_format | marc |
series | De Gruyter series in applied and numerical mathematics |
series2 | De Gruyter series in applied and numerical mathematics |
spelling | Sun, Zhi-zhong 1963- Verfasser (DE-588)1100560432 aut Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao Berlin ; Boston De Gruyter [2023] Science Press © 2023 1 Online-Ressource (XIV, 418 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in applied and numerical mathematics volume 8 Nonlinear evolution equations are widely used to describe nonlinear phenomena in natural and social sciences. However, they are usually quite difficult to solve in most instances. This book introduces the finite difference methods for solving nonlinear evolution equations. The main numerical analysis tool is the energy method. This book covers the difference methods for the initial-boundary value problems of twelve nonlinear partial differential equations. They are Fisher equation, Burgers' equation, regularized long-wave equation, Korteweg-de Vries equation, Camassa-Holm equation, Schrödinger equation, Kuramoto-Tsuzuki equation, Zakharov equation, Ginzburg-Landau equation, Cahn-Hilliard equation, epitaxial growth model and phase field crystal model. This book is a monograph for the graduate students and science researchers majoring in computational mathematics and applied mathematics. It will be also useful to all researchers in related disciplines. Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh Zhang, Qifeng 1987- Verfasser (DE-588)1292167025 aut Gao, Guang-hua 1985- Verfasser (DE-588)1217419950 aut Erscheint auch als Druck-Ausgabe 978-3-11-079585-1 De Gruyter series in applied and numerical mathematics volume 8 (DE-604)BV044780808 8 https://doi.org/10.1515/9783110796018 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sun, Zhi-zhong 1963- Zhang, Qifeng 1987- Gao, Guang-hua 1985- Finite difference methods for nonlinear evolution equations De Gruyter series in applied and numerical mathematics Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh |
title | Finite difference methods for nonlinear evolution equations |
title_auth | Finite difference methods for nonlinear evolution equations |
title_exact_search | Finite difference methods for nonlinear evolution equations |
title_exact_search_txtP | Finite difference methods for nonlinear evolution equations |
title_full | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao |
title_fullStr | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao |
title_full_unstemmed | Finite difference methods for nonlinear evolution equations Zhi-Zhong Sun, Qifeng Zhang, and Guang-hua Gao |
title_short | Finite difference methods for nonlinear evolution equations |
title_sort | finite difference methods for nonlinear evolution equations |
topic | Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis bisacsh |
topic_facet | Differentialgleichung Finite-Differenzen-Methoden Finites Element Nichtlineare Gleichnugan MATHEMATICS / Numerical Analysis |
url | https://doi.org/10.1515/9783110796018 |
volume_link | (DE-604)BV044780808 |
work_keys_str_mv | AT sunzhizhong finitedifferencemethodsfornonlinearevolutionequations AT zhangqifeng finitedifferencemethodsfornonlinearevolutionequations AT gaoguanghua finitedifferencemethodsfornonlinearevolutionequations |