Robust Process Mining with Guarantees: Process Discovery, Conformance Checking and Enhancement
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schriftenreihe: | Lecture Notes in Business Information Processing Series
v.440 |
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (478 Seiten) |
ISBN: | 9783030966553 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048921028 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230502s2022 xx o|||| 00||| eng d | ||
020 | |a 9783030966553 |9 978-3-030-96655-3 | ||
035 | |a (ZDB-30-PQE)EBC6940009 | ||
035 | |a (ZDB-30-PAD)EBC6940009 | ||
035 | |a (ZDB-89-EBL)EBL6940009 | ||
035 | |a (OCoLC)1306273678 | ||
035 | |a (DE-599)BVBBV048921028 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 006.312 | |
084 | |a QP 340 |0 (DE-625)141861: |2 rvk | ||
084 | |a ST 515 |0 (DE-625)143677: |2 rvk | ||
100 | 1 | |a Leemans, Sander J. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Robust Process Mining with Guarantees |b Process Discovery, Conformance Checking and Enhancement |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (478 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Business Information Processing Series |v v.440 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Acknowledgements -- Summary -- Contents -- 1 Introduction -- 1.1 Abstractions in Process Mining -- 1.2 Process Discovery -- 1.3 Conformance Checking -- 1.4 Enhancement & -- Tool Support -- 1.5 Contributions and Structure of this Book -- References -- 2 Preliminaries -- 2.1 Multisets, Traces, Regular Expressions -- 2.2 Process Models -- 2.2.1 Automata -- 2.2.2 Petri Nets -- 2.2.3 Yet Another Workflow Language -- 2.2.4 Business Process Model and Notation -- 2.2.5 Process Trees -- 2.3 Event Logs -- 2.3.1 Atomic Event Logs -- 2.3.2 Non-Atomic Event Logs -- 2.3.3 Richer Logs -- 2.4 Directly Follows Relation -- References -- 3 Process Mining -- 3.1 Different Use Cases, Different Process Mining Techniques -- 3.2 Formal Key Challenges of Process Mining -- 3.2.1 Models with Precise Semantics -- 3.2.2 System - Log - Model Relations -- 3.2.3 Simplicity & -- Balancing Log Criteria -- 3.2.4 An Ideal Technique (1) -- 3.3 Process Discovery -- 3.3.1 Discovery Algorithms Guaranteeing Soundness -- 3.3.2 Other Discovery Algorithms -- 3.3.3 An Ideal Process Discovery Technique (2) -- 3.4 Conformance Checking -- 3.4.1 Log Conformance Checking -- 3.4.2 System Conformance Checking -- 3.4.3 An Ideal Conformance Checking Technique (2) -- 3.5 Enhancement & -- Tool Support -- 3.5.1 Enhancements -- 3.5.2 Process Mining Tools -- 3.5.3 Requirements for Tool Support Beyond Process Discovery and Conformance Checking -- 3.6 Our Approach -- 3.6.1 A Process Discovery Framework -- 3.6.2 A Conformance Checking Framework -- 3.6.3 Enhancement & -- Tool Support -- 3.6.4 Future Work -- References -- 4 Recursive Process Discovery -- 4.1 Recursive Process Discovery -- 4.1.1 An Example of Recursive Process Discovery -- 4.1.2 The IM framework -- 4.1.3 More Technical Examples -- 4.1.4 Guarantees -- 4.2 Rediscoverability | |
505 | 8 | |a 4.2.1 Rediscoverability using Abstractions -- 4.2.2 Rediscoverability and the IM framework -- References -- 5 Abstractions -- 5.1 A Canonical Normal Form for Process Trees -- 5.1.1 Reduction Rules -- 5.1.2 Canonicity of the Reduction Rules -- 5.2 Language Uniqueness with Directly Follows Graphs -- 5.2.1 A Class of Trees: Cb -- 5.2.2 Footprints -- 5.2.3 Language Uniqueness -- 5.3 Language Uniqueness with Activity Relations -- 5.3.1 Activity Relations -- 5.3.2 Binary Trees -- 5.3.3 Language Uniqueness -- 5.4 Language Uniqueness with Interleaving -- 5.4.1 Footprint -- 5.4.2 A Class of Trees: Ci -- 5.4.3 Language Uniqueness -- 5.5 Language Uniqueness with Minimum Self-Distance -- 5.5.1 Minimum Self-Distance -- 5.5.2 A Class of Trees: Cm -- 5.5.3 Footprints -- 5.5.4 LC-Property -- 5.5.5 Language Uniqueness -- 5.6 Language Uniqueness with Optionality & -- Inclusive Choice -- 5.6.1 Optionality -- 5.6.2 Optionality in the Directly Follows Graph -- 5.6.3 A Class of Trees: Ccoo -- 5.6.4 Optionality under Sequence -- 5.6.5 Optionality under Inclusive Choice & -- Concurrency -- 5.6.6 Language Uniqueness -- 5.7 Language Uniqueness with non-Atomic Process Models -- 5.7.1 Non-Atomic Process Models -- 5.7.2 Representational Bias of Non-Atomic Models -- 5.7.3 Non-Atomic Directly Follows Graphs & -- Footprints -- 5.7.4 Concurrency Graphs & -- Footprints -- 5.7.5 A Class of Trees: Clc -- 5.7.6 Language Uniqueness -- 5.8 Classes of Process Trees: Revisited -- References -- 6 Discovery Algorithms -- 6.1 Inductive Miner (IM) -- 6.1.1 Example -- 6.1.2 Inductive Miner (IM) -- 6.1.3 Guarantees -- 6.2 Handling Deviating & -- Infrequent Behaviour -- 6.2.1 Deviating & -- Infrequent Behaviour -- 6.2.2 Inductive Miner - infrequent (IMf) -- 6.2.3 Example -- 6.2.4 Guarantees -- 6.3 Handling Incomplete Behaviour -- 6.3.1 Incomplete Behaviour | |
505 | 8 | |a 6.3.2 Inductive Miner - incompleteness (IMc) -- 6.3.3 Example -- 6.3.4 Guarantees -- 6.3.5 Finding Cuts: Translation to SMT -- 6.4 Handling More Constructs: , '39'42'"613A''45'47'"603A and '39'42'"613A''45'47'"603A -- 6.4.1 Example -- 6.4.2 Inductive Miner - all operators (IMa) -- 6.4.3 Inductive Miner - infrequent - all operators (IMfa) -- 6.4.4 Guarantees -- 6.5 Handling Non-Atomic Event Logs -- 6.5.1 Non-Atomic Event Logs -- 6.5.2 Inductive Miner - life cycle (IMlc) -- 6.5.3 Inductive Miner - infrequent - life cycle (IMflc) & -- Inductive Miner - incompleteness - life cycle (IMclc) -- 6.5.4 Implementation -- 6.5.5 Guarantees -- 6.6 Handling Large Event Logs -- 6.6.1 Example -- 6.6.2 Inductive Miner - directly follows based framework (IMd framework) -- 6.6.3 Inductive Miner - directly follows (IMd) -- 6.6.4 Inductive Miner - infrequent - directly follows (IMfd) -- 6.6.5 Inductive Miner - incompleteness - directly follows (IMcd) -- 6.6.6 Guarantees -- 6.7 Tool Support -- 6.8 Summary: Choosing a Miner -- References -- 7 Conformance Checking -- 7.1 Projected Conformance Checking Framework -- 7.1.1 Log to Projected Log to DFA -- 7.1.2 Model to Projected Model to DFA -- 7.1.3 Comparing DFAs & -- Measuring -- 7.1.4 Measuring over All Activities -- 7.2 An Example of Non-Conformance and Diagnostic Information -- 7.3 Guarantees -- 7.4 Tool Support -- 7.5 Conclusion -- 7.6 Ideas to Handle Unbounded & -- Weakly Unsound Petri Nets -- References -- 8 Evaluation -- 8.1 Evaluated Process Discovery Algorithms -- 8.2 Scalability of Discovery Algorithms -- 8.2.1 Set-up -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Log-Quality Dimensions -- 8.3.1 Event Logs -- 8.3.2 Quantitative -- 8.3.3 Qualitative -- 8.3.4 Conclusion -- 8.4 Rediscoverability & -- its Challenges -- 8.4.1 Incomplete Behaviour -- 8.4.2 Deviating & -- Infrequent Behaviour | |
505 | 8 | |a 8.5 Evaluation of Log-Conformance Checking -- 8.5.1 Set-up -- 8.5.2 Results -- 8.5.3 Discussion -- 8.5.4 Evaluation Using the PCC framework -- 8.6 Non-Atomic Behaviour -- 8.6.1 Artificial Log -- 8.6.2 Real-Life Log -- 8.7 Conclusion -- References -- 9 Enhancement & -- Inductive visual Miner -- 9.1 Inductive visual Miner (IvM) -- 9.1.1 Steps & -- Architecture -- 9.1.2 Model Visualisation -- 9.1.3 Controls & -- Parameters -- 9.1.4 Adding Extensions -- 9.2 Deviations -- 9.2.1 Deviations and the PCC framework -- 9.2.2 Deviations and Alignments -- 9.3 Frequency Information -- 9.4 Projecting Performance Information on Process Trees -- 9.5 Animation -- 9.6 Conclusion -- References -- 10 Conclusion -- 10.1 Process Discovery -- 10.2 Conformance Checking -- 10.3 Enhancement & -- Tool Support -- 10.4 Remaining Challenges -- 10.4.1 Detailed -- 10.4.2 Future Work -- References -- Index | |
650 | 4 | |a Process mining | |
650 | 0 | 7 | |a Prozessanalyse |g Prozessmanagement |0 (DE-588)4496282-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Prozessanalyse |g Prozessmanagement |0 (DE-588)4496282-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Leemans, Sander J. J. |t Robust Process Mining with Guarantees |d Cham : Springer International Publishing AG,c2022 |z 9783030966546 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034185119 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6940009 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882491410481152 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Leemans, Sander J. J. |
author_facet | Leemans, Sander J. J. |
author_role | aut |
author_sort | Leemans, Sander J. J. |
author_variant | s j j l sjj sjjl |
building | Verbundindex |
bvnumber | BV048921028 |
classification_rvk | QP 340 ST 515 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Acknowledgements -- Summary -- Contents -- 1 Introduction -- 1.1 Abstractions in Process Mining -- 1.2 Process Discovery -- 1.3 Conformance Checking -- 1.4 Enhancement & -- Tool Support -- 1.5 Contributions and Structure of this Book -- References -- 2 Preliminaries -- 2.1 Multisets, Traces, Regular Expressions -- 2.2 Process Models -- 2.2.1 Automata -- 2.2.2 Petri Nets -- 2.2.3 Yet Another Workflow Language -- 2.2.4 Business Process Model and Notation -- 2.2.5 Process Trees -- 2.3 Event Logs -- 2.3.1 Atomic Event Logs -- 2.3.2 Non-Atomic Event Logs -- 2.3.3 Richer Logs -- 2.4 Directly Follows Relation -- References -- 3 Process Mining -- 3.1 Different Use Cases, Different Process Mining Techniques -- 3.2 Formal Key Challenges of Process Mining -- 3.2.1 Models with Precise Semantics -- 3.2.2 System - Log - Model Relations -- 3.2.3 Simplicity & -- Balancing Log Criteria -- 3.2.4 An Ideal Technique (1) -- 3.3 Process Discovery -- 3.3.1 Discovery Algorithms Guaranteeing Soundness -- 3.3.2 Other Discovery Algorithms -- 3.3.3 An Ideal Process Discovery Technique (2) -- 3.4 Conformance Checking -- 3.4.1 Log Conformance Checking -- 3.4.2 System Conformance Checking -- 3.4.3 An Ideal Conformance Checking Technique (2) -- 3.5 Enhancement & -- Tool Support -- 3.5.1 Enhancements -- 3.5.2 Process Mining Tools -- 3.5.3 Requirements for Tool Support Beyond Process Discovery and Conformance Checking -- 3.6 Our Approach -- 3.6.1 A Process Discovery Framework -- 3.6.2 A Conformance Checking Framework -- 3.6.3 Enhancement & -- Tool Support -- 3.6.4 Future Work -- References -- 4 Recursive Process Discovery -- 4.1 Recursive Process Discovery -- 4.1.1 An Example of Recursive Process Discovery -- 4.1.2 The IM framework -- 4.1.3 More Technical Examples -- 4.1.4 Guarantees -- 4.2 Rediscoverability 4.2.1 Rediscoverability using Abstractions -- 4.2.2 Rediscoverability and the IM framework -- References -- 5 Abstractions -- 5.1 A Canonical Normal Form for Process Trees -- 5.1.1 Reduction Rules -- 5.1.2 Canonicity of the Reduction Rules -- 5.2 Language Uniqueness with Directly Follows Graphs -- 5.2.1 A Class of Trees: Cb -- 5.2.2 Footprints -- 5.2.3 Language Uniqueness -- 5.3 Language Uniqueness with Activity Relations -- 5.3.1 Activity Relations -- 5.3.2 Binary Trees -- 5.3.3 Language Uniqueness -- 5.4 Language Uniqueness with Interleaving -- 5.4.1 Footprint -- 5.4.2 A Class of Trees: Ci -- 5.4.3 Language Uniqueness -- 5.5 Language Uniqueness with Minimum Self-Distance -- 5.5.1 Minimum Self-Distance -- 5.5.2 A Class of Trees: Cm -- 5.5.3 Footprints -- 5.5.4 LC-Property -- 5.5.5 Language Uniqueness -- 5.6 Language Uniqueness with Optionality & -- Inclusive Choice -- 5.6.1 Optionality -- 5.6.2 Optionality in the Directly Follows Graph -- 5.6.3 A Class of Trees: Ccoo -- 5.6.4 Optionality under Sequence -- 5.6.5 Optionality under Inclusive Choice & -- Concurrency -- 5.6.6 Language Uniqueness -- 5.7 Language Uniqueness with non-Atomic Process Models -- 5.7.1 Non-Atomic Process Models -- 5.7.2 Representational Bias of Non-Atomic Models -- 5.7.3 Non-Atomic Directly Follows Graphs & -- Footprints -- 5.7.4 Concurrency Graphs & -- Footprints -- 5.7.5 A Class of Trees: Clc -- 5.7.6 Language Uniqueness -- 5.8 Classes of Process Trees: Revisited -- References -- 6 Discovery Algorithms -- 6.1 Inductive Miner (IM) -- 6.1.1 Example -- 6.1.2 Inductive Miner (IM) -- 6.1.3 Guarantees -- 6.2 Handling Deviating & -- Infrequent Behaviour -- 6.2.1 Deviating & -- Infrequent Behaviour -- 6.2.2 Inductive Miner - infrequent (IMf) -- 6.2.3 Example -- 6.2.4 Guarantees -- 6.3 Handling Incomplete Behaviour -- 6.3.1 Incomplete Behaviour 6.3.2 Inductive Miner - incompleteness (IMc) -- 6.3.3 Example -- 6.3.4 Guarantees -- 6.3.5 Finding Cuts: Translation to SMT -- 6.4 Handling More Constructs: , '39'42'"613A''45'47'"603A and '39'42'"613A''45'47'"603A -- 6.4.1 Example -- 6.4.2 Inductive Miner - all operators (IMa) -- 6.4.3 Inductive Miner - infrequent - all operators (IMfa) -- 6.4.4 Guarantees -- 6.5 Handling Non-Atomic Event Logs -- 6.5.1 Non-Atomic Event Logs -- 6.5.2 Inductive Miner - life cycle (IMlc) -- 6.5.3 Inductive Miner - infrequent - life cycle (IMflc) & -- Inductive Miner - incompleteness - life cycle (IMclc) -- 6.5.4 Implementation -- 6.5.5 Guarantees -- 6.6 Handling Large Event Logs -- 6.6.1 Example -- 6.6.2 Inductive Miner - directly follows based framework (IMd framework) -- 6.6.3 Inductive Miner - directly follows (IMd) -- 6.6.4 Inductive Miner - infrequent - directly follows (IMfd) -- 6.6.5 Inductive Miner - incompleteness - directly follows (IMcd) -- 6.6.6 Guarantees -- 6.7 Tool Support -- 6.8 Summary: Choosing a Miner -- References -- 7 Conformance Checking -- 7.1 Projected Conformance Checking Framework -- 7.1.1 Log to Projected Log to DFA -- 7.1.2 Model to Projected Model to DFA -- 7.1.3 Comparing DFAs & -- Measuring -- 7.1.4 Measuring over All Activities -- 7.2 An Example of Non-Conformance and Diagnostic Information -- 7.3 Guarantees -- 7.4 Tool Support -- 7.5 Conclusion -- 7.6 Ideas to Handle Unbounded & -- Weakly Unsound Petri Nets -- References -- 8 Evaluation -- 8.1 Evaluated Process Discovery Algorithms -- 8.2 Scalability of Discovery Algorithms -- 8.2.1 Set-up -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Log-Quality Dimensions -- 8.3.1 Event Logs -- 8.3.2 Quantitative -- 8.3.3 Qualitative -- 8.3.4 Conclusion -- 8.4 Rediscoverability & -- its Challenges -- 8.4.1 Incomplete Behaviour -- 8.4.2 Deviating & -- Infrequent Behaviour 8.5 Evaluation of Log-Conformance Checking -- 8.5.1 Set-up -- 8.5.2 Results -- 8.5.3 Discussion -- 8.5.4 Evaluation Using the PCC framework -- 8.6 Non-Atomic Behaviour -- 8.6.1 Artificial Log -- 8.6.2 Real-Life Log -- 8.7 Conclusion -- References -- 9 Enhancement & -- Inductive visual Miner -- 9.1 Inductive visual Miner (IvM) -- 9.1.1 Steps & -- Architecture -- 9.1.2 Model Visualisation -- 9.1.3 Controls & -- Parameters -- 9.1.4 Adding Extensions -- 9.2 Deviations -- 9.2.1 Deviations and the PCC framework -- 9.2.2 Deviations and Alignments -- 9.3 Frequency Information -- 9.4 Projecting Performance Information on Process Trees -- 9.5 Animation -- 9.6 Conclusion -- References -- 10 Conclusion -- 10.1 Process Discovery -- 10.2 Conformance Checking -- 10.3 Enhancement & -- Tool Support -- 10.4 Remaining Challenges -- 10.4.1 Detailed -- 10.4.2 Future Work -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6940009 (ZDB-30-PAD)EBC6940009 (ZDB-89-EBL)EBL6940009 (OCoLC)1306273678 (DE-599)BVBBV048921028 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV048921028</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230502s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030966553</subfield><subfield code="9">978-3-030-96655-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6940009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6940009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6940009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1306273678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048921028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 340</subfield><subfield code="0">(DE-625)141861:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 515</subfield><subfield code="0">(DE-625)143677:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leemans, Sander J. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Robust Process Mining with Guarantees</subfield><subfield code="b">Process Discovery, Conformance Checking and Enhancement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (478 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Business Information Processing Series</subfield><subfield code="v">v.440</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Summary -- Contents -- 1 Introduction -- 1.1 Abstractions in Process Mining -- 1.2 Process Discovery -- 1.3 Conformance Checking -- 1.4 Enhancement &amp -- Tool Support -- 1.5 Contributions and Structure of this Book -- References -- 2 Preliminaries -- 2.1 Multisets, Traces, Regular Expressions -- 2.2 Process Models -- 2.2.1 Automata -- 2.2.2 Petri Nets -- 2.2.3 Yet Another Workflow Language -- 2.2.4 Business Process Model and Notation -- 2.2.5 Process Trees -- 2.3 Event Logs -- 2.3.1 Atomic Event Logs -- 2.3.2 Non-Atomic Event Logs -- 2.3.3 Richer Logs -- 2.4 Directly Follows Relation -- References -- 3 Process Mining -- 3.1 Different Use Cases, Different Process Mining Techniques -- 3.2 Formal Key Challenges of Process Mining -- 3.2.1 Models with Precise Semantics -- 3.2.2 System - Log - Model Relations -- 3.2.3 Simplicity &amp -- Balancing Log Criteria -- 3.2.4 An Ideal Technique (1) -- 3.3 Process Discovery -- 3.3.1 Discovery Algorithms Guaranteeing Soundness -- 3.3.2 Other Discovery Algorithms -- 3.3.3 An Ideal Process Discovery Technique (2) -- 3.4 Conformance Checking -- 3.4.1 Log Conformance Checking -- 3.4.2 System Conformance Checking -- 3.4.3 An Ideal Conformance Checking Technique (2) -- 3.5 Enhancement &amp -- Tool Support -- 3.5.1 Enhancements -- 3.5.2 Process Mining Tools -- 3.5.3 Requirements for Tool Support Beyond Process Discovery and Conformance Checking -- 3.6 Our Approach -- 3.6.1 A Process Discovery Framework -- 3.6.2 A Conformance Checking Framework -- 3.6.3 Enhancement &amp -- Tool Support -- 3.6.4 Future Work -- References -- 4 Recursive Process Discovery -- 4.1 Recursive Process Discovery -- 4.1.1 An Example of Recursive Process Discovery -- 4.1.2 The IM framework -- 4.1.3 More Technical Examples -- 4.1.4 Guarantees -- 4.2 Rediscoverability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1 Rediscoverability using Abstractions -- 4.2.2 Rediscoverability and the IM framework -- References -- 5 Abstractions -- 5.1 A Canonical Normal Form for Process Trees -- 5.1.1 Reduction Rules -- 5.1.2 Canonicity of the Reduction Rules -- 5.2 Language Uniqueness with Directly Follows Graphs -- 5.2.1 A Class of Trees: Cb -- 5.2.2 Footprints -- 5.2.3 Language Uniqueness -- 5.3 Language Uniqueness with Activity Relations -- 5.3.1 Activity Relations -- 5.3.2 Binary Trees -- 5.3.3 Language Uniqueness -- 5.4 Language Uniqueness with Interleaving -- 5.4.1 Footprint -- 5.4.2 A Class of Trees: Ci -- 5.4.3 Language Uniqueness -- 5.5 Language Uniqueness with Minimum Self-Distance -- 5.5.1 Minimum Self-Distance -- 5.5.2 A Class of Trees: Cm -- 5.5.3 Footprints -- 5.5.4 LC-Property -- 5.5.5 Language Uniqueness -- 5.6 Language Uniqueness with Optionality &amp -- Inclusive Choice -- 5.6.1 Optionality -- 5.6.2 Optionality in the Directly Follows Graph -- 5.6.3 A Class of Trees: Ccoo -- 5.6.4 Optionality under Sequence -- 5.6.5 Optionality under Inclusive Choice &amp -- Concurrency -- 5.6.6 Language Uniqueness -- 5.7 Language Uniqueness with non-Atomic Process Models -- 5.7.1 Non-Atomic Process Models -- 5.7.2 Representational Bias of Non-Atomic Models -- 5.7.3 Non-Atomic Directly Follows Graphs &amp -- Footprints -- 5.7.4 Concurrency Graphs &amp -- Footprints -- 5.7.5 A Class of Trees: Clc -- 5.7.6 Language Uniqueness -- 5.8 Classes of Process Trees: Revisited -- References -- 6 Discovery Algorithms -- 6.1 Inductive Miner (IM) -- 6.1.1 Example -- 6.1.2 Inductive Miner (IM) -- 6.1.3 Guarantees -- 6.2 Handling Deviating &amp -- Infrequent Behaviour -- 6.2.1 Deviating &amp -- Infrequent Behaviour -- 6.2.2 Inductive Miner - infrequent (IMf) -- 6.2.3 Example -- 6.2.4 Guarantees -- 6.3 Handling Incomplete Behaviour -- 6.3.1 Incomplete Behaviour</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.2 Inductive Miner - incompleteness (IMc) -- 6.3.3 Example -- 6.3.4 Guarantees -- 6.3.5 Finding Cuts: Translation to SMT -- 6.4 Handling More Constructs: , '39'42'"613A''45'47'"603A and '39'42'"613A''45'47'"603A -- 6.4.1 Example -- 6.4.2 Inductive Miner - all operators (IMa) -- 6.4.3 Inductive Miner - infrequent - all operators (IMfa) -- 6.4.4 Guarantees -- 6.5 Handling Non-Atomic Event Logs -- 6.5.1 Non-Atomic Event Logs -- 6.5.2 Inductive Miner - life cycle (IMlc) -- 6.5.3 Inductive Miner - infrequent - life cycle (IMflc) &amp -- Inductive Miner - incompleteness - life cycle (IMclc) -- 6.5.4 Implementation -- 6.5.5 Guarantees -- 6.6 Handling Large Event Logs -- 6.6.1 Example -- 6.6.2 Inductive Miner - directly follows based framework (IMd framework) -- 6.6.3 Inductive Miner - directly follows (IMd) -- 6.6.4 Inductive Miner - infrequent - directly follows (IMfd) -- 6.6.5 Inductive Miner - incompleteness - directly follows (IMcd) -- 6.6.6 Guarantees -- 6.7 Tool Support -- 6.8 Summary: Choosing a Miner -- References -- 7 Conformance Checking -- 7.1 Projected Conformance Checking Framework -- 7.1.1 Log to Projected Log to DFA -- 7.1.2 Model to Projected Model to DFA -- 7.1.3 Comparing DFAs &amp -- Measuring -- 7.1.4 Measuring over All Activities -- 7.2 An Example of Non-Conformance and Diagnostic Information -- 7.3 Guarantees -- 7.4 Tool Support -- 7.5 Conclusion -- 7.6 Ideas to Handle Unbounded &amp -- Weakly Unsound Petri Nets -- References -- 8 Evaluation -- 8.1 Evaluated Process Discovery Algorithms -- 8.2 Scalability of Discovery Algorithms -- 8.2.1 Set-up -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Log-Quality Dimensions -- 8.3.1 Event Logs -- 8.3.2 Quantitative -- 8.3.3 Qualitative -- 8.3.4 Conclusion -- 8.4 Rediscoverability &amp -- its Challenges -- 8.4.1 Incomplete Behaviour -- 8.4.2 Deviating &amp -- Infrequent Behaviour</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.5 Evaluation of Log-Conformance Checking -- 8.5.1 Set-up -- 8.5.2 Results -- 8.5.3 Discussion -- 8.5.4 Evaluation Using the PCC framework -- 8.6 Non-Atomic Behaviour -- 8.6.1 Artificial Log -- 8.6.2 Real-Life Log -- 8.7 Conclusion -- References -- 9 Enhancement &amp -- Inductive visual Miner -- 9.1 Inductive visual Miner (IvM) -- 9.1.1 Steps &amp -- Architecture -- 9.1.2 Model Visualisation -- 9.1.3 Controls &amp -- Parameters -- 9.1.4 Adding Extensions -- 9.2 Deviations -- 9.2.1 Deviations and the PCC framework -- 9.2.2 Deviations and Alignments -- 9.3 Frequency Information -- 9.4 Projecting Performance Information on Process Trees -- 9.5 Animation -- 9.6 Conclusion -- References -- 10 Conclusion -- 10.1 Process Discovery -- 10.2 Conformance Checking -- 10.3 Enhancement &amp -- Tool Support -- 10.4 Remaining Challenges -- 10.4.1 Detailed -- 10.4.2 Future Work -- References -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Process mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessanalyse</subfield><subfield code="g">Prozessmanagement</subfield><subfield code="0">(DE-588)4496282-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prozessanalyse</subfield><subfield code="g">Prozessmanagement</subfield><subfield code="0">(DE-588)4496282-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Leemans, Sander J. J.</subfield><subfield code="t">Robust Process Mining with Guarantees</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030966546</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034185119</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6940009</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048921028 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:16Z |
indexdate | 2025-01-10T17:07:44Z |
institution | BVB |
isbn | 9783030966553 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034185119 |
oclc_num | 1306273678 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (478 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Lecture Notes in Business Information Processing Series |
spelling | Leemans, Sander J. J. Verfasser aut Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (478 Seiten) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Business Information Processing Series v.440 Description based on publisher supplied metadata and other sources Intro -- Preface -- Acknowledgements -- Summary -- Contents -- 1 Introduction -- 1.1 Abstractions in Process Mining -- 1.2 Process Discovery -- 1.3 Conformance Checking -- 1.4 Enhancement & -- Tool Support -- 1.5 Contributions and Structure of this Book -- References -- 2 Preliminaries -- 2.1 Multisets, Traces, Regular Expressions -- 2.2 Process Models -- 2.2.1 Automata -- 2.2.2 Petri Nets -- 2.2.3 Yet Another Workflow Language -- 2.2.4 Business Process Model and Notation -- 2.2.5 Process Trees -- 2.3 Event Logs -- 2.3.1 Atomic Event Logs -- 2.3.2 Non-Atomic Event Logs -- 2.3.3 Richer Logs -- 2.4 Directly Follows Relation -- References -- 3 Process Mining -- 3.1 Different Use Cases, Different Process Mining Techniques -- 3.2 Formal Key Challenges of Process Mining -- 3.2.1 Models with Precise Semantics -- 3.2.2 System - Log - Model Relations -- 3.2.3 Simplicity & -- Balancing Log Criteria -- 3.2.4 An Ideal Technique (1) -- 3.3 Process Discovery -- 3.3.1 Discovery Algorithms Guaranteeing Soundness -- 3.3.2 Other Discovery Algorithms -- 3.3.3 An Ideal Process Discovery Technique (2) -- 3.4 Conformance Checking -- 3.4.1 Log Conformance Checking -- 3.4.2 System Conformance Checking -- 3.4.3 An Ideal Conformance Checking Technique (2) -- 3.5 Enhancement & -- Tool Support -- 3.5.1 Enhancements -- 3.5.2 Process Mining Tools -- 3.5.3 Requirements for Tool Support Beyond Process Discovery and Conformance Checking -- 3.6 Our Approach -- 3.6.1 A Process Discovery Framework -- 3.6.2 A Conformance Checking Framework -- 3.6.3 Enhancement & -- Tool Support -- 3.6.4 Future Work -- References -- 4 Recursive Process Discovery -- 4.1 Recursive Process Discovery -- 4.1.1 An Example of Recursive Process Discovery -- 4.1.2 The IM framework -- 4.1.3 More Technical Examples -- 4.1.4 Guarantees -- 4.2 Rediscoverability 4.2.1 Rediscoverability using Abstractions -- 4.2.2 Rediscoverability and the IM framework -- References -- 5 Abstractions -- 5.1 A Canonical Normal Form for Process Trees -- 5.1.1 Reduction Rules -- 5.1.2 Canonicity of the Reduction Rules -- 5.2 Language Uniqueness with Directly Follows Graphs -- 5.2.1 A Class of Trees: Cb -- 5.2.2 Footprints -- 5.2.3 Language Uniqueness -- 5.3 Language Uniqueness with Activity Relations -- 5.3.1 Activity Relations -- 5.3.2 Binary Trees -- 5.3.3 Language Uniqueness -- 5.4 Language Uniqueness with Interleaving -- 5.4.1 Footprint -- 5.4.2 A Class of Trees: Ci -- 5.4.3 Language Uniqueness -- 5.5 Language Uniqueness with Minimum Self-Distance -- 5.5.1 Minimum Self-Distance -- 5.5.2 A Class of Trees: Cm -- 5.5.3 Footprints -- 5.5.4 LC-Property -- 5.5.5 Language Uniqueness -- 5.6 Language Uniqueness with Optionality & -- Inclusive Choice -- 5.6.1 Optionality -- 5.6.2 Optionality in the Directly Follows Graph -- 5.6.3 A Class of Trees: Ccoo -- 5.6.4 Optionality under Sequence -- 5.6.5 Optionality under Inclusive Choice & -- Concurrency -- 5.6.6 Language Uniqueness -- 5.7 Language Uniqueness with non-Atomic Process Models -- 5.7.1 Non-Atomic Process Models -- 5.7.2 Representational Bias of Non-Atomic Models -- 5.7.3 Non-Atomic Directly Follows Graphs & -- Footprints -- 5.7.4 Concurrency Graphs & -- Footprints -- 5.7.5 A Class of Trees: Clc -- 5.7.6 Language Uniqueness -- 5.8 Classes of Process Trees: Revisited -- References -- 6 Discovery Algorithms -- 6.1 Inductive Miner (IM) -- 6.1.1 Example -- 6.1.2 Inductive Miner (IM) -- 6.1.3 Guarantees -- 6.2 Handling Deviating & -- Infrequent Behaviour -- 6.2.1 Deviating & -- Infrequent Behaviour -- 6.2.2 Inductive Miner - infrequent (IMf) -- 6.2.3 Example -- 6.2.4 Guarantees -- 6.3 Handling Incomplete Behaviour -- 6.3.1 Incomplete Behaviour 6.3.2 Inductive Miner - incompleteness (IMc) -- 6.3.3 Example -- 6.3.4 Guarantees -- 6.3.5 Finding Cuts: Translation to SMT -- 6.4 Handling More Constructs: , '39'42'"613A''45'47'"603A and '39'42'"613A''45'47'"603A -- 6.4.1 Example -- 6.4.2 Inductive Miner - all operators (IMa) -- 6.4.3 Inductive Miner - infrequent - all operators (IMfa) -- 6.4.4 Guarantees -- 6.5 Handling Non-Atomic Event Logs -- 6.5.1 Non-Atomic Event Logs -- 6.5.2 Inductive Miner - life cycle (IMlc) -- 6.5.3 Inductive Miner - infrequent - life cycle (IMflc) & -- Inductive Miner - incompleteness - life cycle (IMclc) -- 6.5.4 Implementation -- 6.5.5 Guarantees -- 6.6 Handling Large Event Logs -- 6.6.1 Example -- 6.6.2 Inductive Miner - directly follows based framework (IMd framework) -- 6.6.3 Inductive Miner - directly follows (IMd) -- 6.6.4 Inductive Miner - infrequent - directly follows (IMfd) -- 6.6.5 Inductive Miner - incompleteness - directly follows (IMcd) -- 6.6.6 Guarantees -- 6.7 Tool Support -- 6.8 Summary: Choosing a Miner -- References -- 7 Conformance Checking -- 7.1 Projected Conformance Checking Framework -- 7.1.1 Log to Projected Log to DFA -- 7.1.2 Model to Projected Model to DFA -- 7.1.3 Comparing DFAs & -- Measuring -- 7.1.4 Measuring over All Activities -- 7.2 An Example of Non-Conformance and Diagnostic Information -- 7.3 Guarantees -- 7.4 Tool Support -- 7.5 Conclusion -- 7.6 Ideas to Handle Unbounded & -- Weakly Unsound Petri Nets -- References -- 8 Evaluation -- 8.1 Evaluated Process Discovery Algorithms -- 8.2 Scalability of Discovery Algorithms -- 8.2.1 Set-up -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Log-Quality Dimensions -- 8.3.1 Event Logs -- 8.3.2 Quantitative -- 8.3.3 Qualitative -- 8.3.4 Conclusion -- 8.4 Rediscoverability & -- its Challenges -- 8.4.1 Incomplete Behaviour -- 8.4.2 Deviating & -- Infrequent Behaviour 8.5 Evaluation of Log-Conformance Checking -- 8.5.1 Set-up -- 8.5.2 Results -- 8.5.3 Discussion -- 8.5.4 Evaluation Using the PCC framework -- 8.6 Non-Atomic Behaviour -- 8.6.1 Artificial Log -- 8.6.2 Real-Life Log -- 8.7 Conclusion -- References -- 9 Enhancement & -- Inductive visual Miner -- 9.1 Inductive visual Miner (IvM) -- 9.1.1 Steps & -- Architecture -- 9.1.2 Model Visualisation -- 9.1.3 Controls & -- Parameters -- 9.1.4 Adding Extensions -- 9.2 Deviations -- 9.2.1 Deviations and the PCC framework -- 9.2.2 Deviations and Alignments -- 9.3 Frequency Information -- 9.4 Projecting Performance Information on Process Trees -- 9.5 Animation -- 9.6 Conclusion -- References -- 10 Conclusion -- 10.1 Process Discovery -- 10.2 Conformance Checking -- 10.3 Enhancement & -- Tool Support -- 10.4 Remaining Challenges -- 10.4.1 Detailed -- 10.4.2 Future Work -- References -- Index Process mining Prozessanalyse Prozessmanagement (DE-588)4496282-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Prozessanalyse Prozessmanagement (DE-588)4496282-4 s DE-604 Erscheint auch als Druck-Ausgabe Leemans, Sander J. J. Robust Process Mining with Guarantees Cham : Springer International Publishing AG,c2022 9783030966546 |
spellingShingle | Leemans, Sander J. J. Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement Intro -- Preface -- Acknowledgements -- Summary -- Contents -- 1 Introduction -- 1.1 Abstractions in Process Mining -- 1.2 Process Discovery -- 1.3 Conformance Checking -- 1.4 Enhancement & -- Tool Support -- 1.5 Contributions and Structure of this Book -- References -- 2 Preliminaries -- 2.1 Multisets, Traces, Regular Expressions -- 2.2 Process Models -- 2.2.1 Automata -- 2.2.2 Petri Nets -- 2.2.3 Yet Another Workflow Language -- 2.2.4 Business Process Model and Notation -- 2.2.5 Process Trees -- 2.3 Event Logs -- 2.3.1 Atomic Event Logs -- 2.3.2 Non-Atomic Event Logs -- 2.3.3 Richer Logs -- 2.4 Directly Follows Relation -- References -- 3 Process Mining -- 3.1 Different Use Cases, Different Process Mining Techniques -- 3.2 Formal Key Challenges of Process Mining -- 3.2.1 Models with Precise Semantics -- 3.2.2 System - Log - Model Relations -- 3.2.3 Simplicity & -- Balancing Log Criteria -- 3.2.4 An Ideal Technique (1) -- 3.3 Process Discovery -- 3.3.1 Discovery Algorithms Guaranteeing Soundness -- 3.3.2 Other Discovery Algorithms -- 3.3.3 An Ideal Process Discovery Technique (2) -- 3.4 Conformance Checking -- 3.4.1 Log Conformance Checking -- 3.4.2 System Conformance Checking -- 3.4.3 An Ideal Conformance Checking Technique (2) -- 3.5 Enhancement & -- Tool Support -- 3.5.1 Enhancements -- 3.5.2 Process Mining Tools -- 3.5.3 Requirements for Tool Support Beyond Process Discovery and Conformance Checking -- 3.6 Our Approach -- 3.6.1 A Process Discovery Framework -- 3.6.2 A Conformance Checking Framework -- 3.6.3 Enhancement & -- Tool Support -- 3.6.4 Future Work -- References -- 4 Recursive Process Discovery -- 4.1 Recursive Process Discovery -- 4.1.1 An Example of Recursive Process Discovery -- 4.1.2 The IM framework -- 4.1.3 More Technical Examples -- 4.1.4 Guarantees -- 4.2 Rediscoverability 4.2.1 Rediscoverability using Abstractions -- 4.2.2 Rediscoverability and the IM framework -- References -- 5 Abstractions -- 5.1 A Canonical Normal Form for Process Trees -- 5.1.1 Reduction Rules -- 5.1.2 Canonicity of the Reduction Rules -- 5.2 Language Uniqueness with Directly Follows Graphs -- 5.2.1 A Class of Trees: Cb -- 5.2.2 Footprints -- 5.2.3 Language Uniqueness -- 5.3 Language Uniqueness with Activity Relations -- 5.3.1 Activity Relations -- 5.3.2 Binary Trees -- 5.3.3 Language Uniqueness -- 5.4 Language Uniqueness with Interleaving -- 5.4.1 Footprint -- 5.4.2 A Class of Trees: Ci -- 5.4.3 Language Uniqueness -- 5.5 Language Uniqueness with Minimum Self-Distance -- 5.5.1 Minimum Self-Distance -- 5.5.2 A Class of Trees: Cm -- 5.5.3 Footprints -- 5.5.4 LC-Property -- 5.5.5 Language Uniqueness -- 5.6 Language Uniqueness with Optionality & -- Inclusive Choice -- 5.6.1 Optionality -- 5.6.2 Optionality in the Directly Follows Graph -- 5.6.3 A Class of Trees: Ccoo -- 5.6.4 Optionality under Sequence -- 5.6.5 Optionality under Inclusive Choice & -- Concurrency -- 5.6.6 Language Uniqueness -- 5.7 Language Uniqueness with non-Atomic Process Models -- 5.7.1 Non-Atomic Process Models -- 5.7.2 Representational Bias of Non-Atomic Models -- 5.7.3 Non-Atomic Directly Follows Graphs & -- Footprints -- 5.7.4 Concurrency Graphs & -- Footprints -- 5.7.5 A Class of Trees: Clc -- 5.7.6 Language Uniqueness -- 5.8 Classes of Process Trees: Revisited -- References -- 6 Discovery Algorithms -- 6.1 Inductive Miner (IM) -- 6.1.1 Example -- 6.1.2 Inductive Miner (IM) -- 6.1.3 Guarantees -- 6.2 Handling Deviating & -- Infrequent Behaviour -- 6.2.1 Deviating & -- Infrequent Behaviour -- 6.2.2 Inductive Miner - infrequent (IMf) -- 6.2.3 Example -- 6.2.4 Guarantees -- 6.3 Handling Incomplete Behaviour -- 6.3.1 Incomplete Behaviour 6.3.2 Inductive Miner - incompleteness (IMc) -- 6.3.3 Example -- 6.3.4 Guarantees -- 6.3.5 Finding Cuts: Translation to SMT -- 6.4 Handling More Constructs: , '39'42'"613A''45'47'"603A and '39'42'"613A''45'47'"603A -- 6.4.1 Example -- 6.4.2 Inductive Miner - all operators (IMa) -- 6.4.3 Inductive Miner - infrequent - all operators (IMfa) -- 6.4.4 Guarantees -- 6.5 Handling Non-Atomic Event Logs -- 6.5.1 Non-Atomic Event Logs -- 6.5.2 Inductive Miner - life cycle (IMlc) -- 6.5.3 Inductive Miner - infrequent - life cycle (IMflc) & -- Inductive Miner - incompleteness - life cycle (IMclc) -- 6.5.4 Implementation -- 6.5.5 Guarantees -- 6.6 Handling Large Event Logs -- 6.6.1 Example -- 6.6.2 Inductive Miner - directly follows based framework (IMd framework) -- 6.6.3 Inductive Miner - directly follows (IMd) -- 6.6.4 Inductive Miner - infrequent - directly follows (IMfd) -- 6.6.5 Inductive Miner - incompleteness - directly follows (IMcd) -- 6.6.6 Guarantees -- 6.7 Tool Support -- 6.8 Summary: Choosing a Miner -- References -- 7 Conformance Checking -- 7.1 Projected Conformance Checking Framework -- 7.1.1 Log to Projected Log to DFA -- 7.1.2 Model to Projected Model to DFA -- 7.1.3 Comparing DFAs & -- Measuring -- 7.1.4 Measuring over All Activities -- 7.2 An Example of Non-Conformance and Diagnostic Information -- 7.3 Guarantees -- 7.4 Tool Support -- 7.5 Conclusion -- 7.6 Ideas to Handle Unbounded & -- Weakly Unsound Petri Nets -- References -- 8 Evaluation -- 8.1 Evaluated Process Discovery Algorithms -- 8.2 Scalability of Discovery Algorithms -- 8.2.1 Set-up -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Log-Quality Dimensions -- 8.3.1 Event Logs -- 8.3.2 Quantitative -- 8.3.3 Qualitative -- 8.3.4 Conclusion -- 8.4 Rediscoverability & -- its Challenges -- 8.4.1 Incomplete Behaviour -- 8.4.2 Deviating & -- Infrequent Behaviour 8.5 Evaluation of Log-Conformance Checking -- 8.5.1 Set-up -- 8.5.2 Results -- 8.5.3 Discussion -- 8.5.4 Evaluation Using the PCC framework -- 8.6 Non-Atomic Behaviour -- 8.6.1 Artificial Log -- 8.6.2 Real-Life Log -- 8.7 Conclusion -- References -- 9 Enhancement & -- Inductive visual Miner -- 9.1 Inductive visual Miner (IvM) -- 9.1.1 Steps & -- Architecture -- 9.1.2 Model Visualisation -- 9.1.3 Controls & -- Parameters -- 9.1.4 Adding Extensions -- 9.2 Deviations -- 9.2.1 Deviations and the PCC framework -- 9.2.2 Deviations and Alignments -- 9.3 Frequency Information -- 9.4 Projecting Performance Information on Process Trees -- 9.5 Animation -- 9.6 Conclusion -- References -- 10 Conclusion -- 10.1 Process Discovery -- 10.2 Conformance Checking -- 10.3 Enhancement & -- Tool Support -- 10.4 Remaining Challenges -- 10.4.1 Detailed -- 10.4.2 Future Work -- References -- Index Process mining Prozessanalyse Prozessmanagement (DE-588)4496282-4 gnd |
subject_GND | (DE-588)4496282-4 (DE-588)4113937-9 |
title | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_auth | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_exact_search | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_exact_search_txtP | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_full | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_fullStr | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_full_unstemmed | Robust Process Mining with Guarantees Process Discovery, Conformance Checking and Enhancement |
title_short | Robust Process Mining with Guarantees |
title_sort | robust process mining with guarantees process discovery conformance checking and enhancement |
title_sub | Process Discovery, Conformance Checking and Enhancement |
topic | Process mining Prozessanalyse Prozessmanagement (DE-588)4496282-4 gnd |
topic_facet | Process mining Prozessanalyse Prozessmanagement Hochschulschrift |
work_keys_str_mv | AT leemanssanderjj robustprocessminingwithguaranteesprocessdiscoveryconformancecheckingandenhancement |