Innovation in Construction: A Practical Guide to Transforming the Construction Industry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (466 Seiten) |
ISBN: | 9783030957988 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048921022 | ||
003 | DE-604 | ||
005 | 20240110 | ||
007 | cr|uuu---uuuuu | ||
008 | 230502s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783030957988 |9 978-3-030-95798-8 | ||
035 | |a (ZDB-30-PQE)EBC6938743 | ||
035 | |a (ZDB-30-PAD)EBC6938743 | ||
035 | |a (ZDB-89-EBL)EBL6938743 | ||
035 | |a (OCoLC)1305915726 | ||
035 | |a (DE-599)BVBBV048921022 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 338.4769 | |
100 | 1 | |a Ghaffar, Seyed Hamidreza |e Verfasser |4 aut | |
245 | 1 | 0 | |a Innovation in Construction |b A Practical Guide to Transforming the Construction Industry |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (466 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- Part I Industry 4.0 and Drivers for Change -- 1 What Is Industry 4.0? -- 1 Additive Manufacturing -- 2 Data and Analytics -- 2.1 Construction's Historic Data Problems -- 2.2 The Development of Analysis -- 2.3 Data Use by Contractors -- 2.4 Data Use by Asset Owners -- 2.5 Data and Analytics Now-A Platform for Industry 4.0? -- 3 Artificial Intelligence -- 4 Robotics and Automation -- 5 Virtual, Augmented, Mixed, and Extended Reality -- 6 IoT and 5G -- 7 Digital Twins -- 8 Nanotechnology -- 9 Conclusions -- References -- 2 The Global Environmental Imperative -- 1 Climate Emergency -- 2 Overview of Construction industry's Contribution to Global Carbon -- 3 Carbon Mitigation Initiatives and Sustainable Development -- 4 Conclusions -- References -- 3 Industry 4.0 and Drivers for Socioeconomic Sustainability in the Construction Sector -- 1 Introduction -- 2 Population Forecasts and Urbanization Challenges Under Industry 4.0 -- 3 Construction 4.0 and Sustainable Development -- 4 Future-Proof Construction Industry: The Need for Crisis Resilience -- 5 Conclusions -- References -- 4 The Circular Construction Industry -- 1 Introduction -- 2 Principles of Circular Economy Concept -- 3 Innovative Technologies for Circular Construction -- 4 Construction and Demolition Waste Management -- 4.1 Construction and Demolition Waste Valorisation -- 5 Circular Construction Practices in the Industry -- 6 Conclusions and Prospective -- References -- Part II Innovation in Construction: A New Future for the Construction Industry. Areas of Focus for a Step Change in Construction -- 5 Fundamentals of Innovation -- 1 Introduction -- 2 Definition -- 3 Case Study 1-The de Havilland Comet -- 4 Case Study 2-Concorde -- 5 Case Study 3-Boeing 737 -- 6 Fundamentals -- 7 Conclusion -- References | |
505 | 8 | |a 6 Challenges to Innovation in Construction -- 1 Introduction -- 2 The Nature of the Product -- 2.1 Lifespan, Re-use and Embodied Carbon -- 2.2 Unique Complexity -- 2.3 Time and Trends -- 3 The Nature of the Art and Science -- 3.1 Scale -- 3.2 Materials and Methods -- 3.3 Deemed-to-satisfy Design Versus Performance-based Design -- 4 The Nature of the System -- 4.1 Industrial Lock-in -- 4.2 Fragmentation and Value Ownership -- 4.3 Regulation, Life Safety and Risk Aversion -- 4.4 Drivers for Change -- 5 Opportunities for Change -- References -- 7 Cutting-Edge Practical Research on Generative Design, IoT and Digital Twins -- 1 Introduction -- 2 Early Applications of Project Dasher in Building Operations -- 2.1 NASA Ames Sustainability Base -- 2.2 Schneider Electric's GreenOValley HQ -- 3 From Buildings to Infrastructure: Applying Dasher to Bridge Monitoring for Pier 9 and MX3D -- 4 Enhancing Privacy: Using Computer Vision to Anonymize Data Capture of Occupants and Passers-By -- 5 First Steps with Generative Design: The Airbus Bionic Partition -- 6 Designing an Office Generatively: Project Discover and Autodesk's Toronto Office -- 6.1 Evaluation Metrics -- 6.2 Design Generation -- 6.3 Design Exploration -- 6.4 Design Elaboration -- 7 Urban Scale: Applying GD for Residential Neighbourhood Layouts with Van Wijnen -- 8 The Future: Closing the Loop Between Digital Twins and Generative Design -- 9 Conclusions -- References -- 8 Artificial Intelligence and Data in Civil Engineering -- 1 Introduction -- 1.1 Background -- 1.2 What Is Data Science? -- 1.3 The Engineer as a Data Scientist -- 2 Data -- 2.1 Data Types -- 2.2 Getting Data -- 3 Artificial Intelligence -- 3.1 Overview -- 3.2 Machine Learning -- 3.3 Important Machine Learning Algorithms -- 4 Applications of Data Science in Civil Engineering -- 4.1 Predictive Maintenance -- 4.2 Surrogate Modelling | |
505 | 8 | |a 4.3 Design Automation and Parametric Design -- 4.4 Code-Based Checking -- 5 Applied Data Science -- 5.1 Specifying the Problem -- 5.2 Developing the Solution Architecture -- 5.3 Training the Models -- 5.4 Using Other Peoples Models -- 5.5 Visualisation -- 5.6 Validation -- 5.7 Verification -- 6 Practical Guidance -- 6.1 Developing Data Skills -- 6.2 When not to Do Data Science -- 6.3 Biggest Value Projects -- 6.4 When to Ask for Outside Help -- 7 Case Study-Accidental Vessel Impact for Thames Tideway Tunnel -- 7.1 Project Aim -- 7.2 Data -- 7.3 Vessel Aberrancy -- 7.4 Model Overview -- 7.5 Modelling Assumptions -- 7.6 Applied Data Science -- 8 Conclusions -- References -- 9 Potential Application of Blockchain Technology to Transform the Construction Industry -- 1 Introduction -- 2 Fundamentals of Blockchain Technology -- 2.1 Peer-to-Peer Network -- 2.2 Hashing Algorithm -- 2.3 Public-Key Cryptography -- 2.4 Consensus Mechanism -- 2.5 Blockchain Architecture -- 3 Salient Features of Blockchain -- 4 Blockchain Taxonomy: Public, Private and Consortium -- 5 Blockchain Platforms -- 6 Blockchain Applications: Blockchain 1.0, Blockchain 2.0 and Blockchain 3.0 -- 7 Blockchain Applications for the Construction Industry -- 7.1 Supply Chain Management and Logistics Management -- 7.2 Property Transactions Management -- 7.3 Documentation Management and Integration with Building Information Modelling -- 7.4 Payment and Certification -- 7.5 Contract Management -- 7.6 Facilities Management -- 7.7 Quality Assurance and Compliance -- 8 Blockchain Applications for Sustainable Construction -- 8.1 Embodied Carbon Management -- 8.2 Energy Trading and Energy Management -- 8.3 Water Trading and Water Management -- 8.4 Waste Trading and Waste Management -- 8.5 Health and Safety Management -- 9 Conclusions -- References | |
505 | 8 | |a 10 Parametric Design-A Drive Towards a Sustainable Future -- 1 Introduction -- 1.1 Parametric Modelling Versus Parametric Design -- 1.2 The Future of Parameterisation -- 2 Parametric Design Software -- 3 Basic Principles of Parametric Modelling and Design -- 3.1 The Basic Process -- 4 Parametric Modelling -- 5 Parametric Design -- 5.1 Form Finding -- 5.2 Manual Optimisation -- 5.3 Genetic Algorithm Optimisation -- 5.4 Generative Design -- 5.5 Topology Optimisation -- 6 Case Studies -- 6.1 Case Study 1: Form Finding -- 6.2 Case Study 2: Slab Optimisation -- 6.3 Case Study 3: Generative Design -- 6.4 Case Study 4: Elizabeth House Arch -- 7 Lessons Learnt -- 8 A Parametric Drive to Sustainable Design -- 8.1 Material Optimisation -- 8.2 Challenging Structural Form -- 8.3 Visualisation of Sustainable Targets -- 8.4 Modern Methods of Construction and Componentised Design -- 8.5 Integration of Existing Structure -- 8.6 Future of Materials -- 9 Concluding Thoughts -- Reference -- 11 Construction Industry Transformation Through Modular Methods -- 1 Introduction -- 2 Benefits of Modular Construction -- 3 Design Requirements of Modular Buildings -- 4 The Future of Modular Construction -- 4.1 Modular Construction Market -- 4.2 Cost Analysis -- 5 Case Studies of Modular Constructions -- 5.1 Case Studies for Residential Houses -- 5.2 Case Studies for Commercial Buildings -- 6 Innovations in Modular Construction -- 6.1 Opportunities with Composite Materials -- 6.2 Future Opportunities -- 7 Conclusions -- References -- 12 Concrete 3D Printing: Challenges and Opportunities for the Construction Industry -- 1 Introduction -- 1.1 Digital Transformation in the Construction Industry -- 1.2 Earlier Efforts Toward Automated Construction -- 1.3 Recent Developments -- 2 Current Status of the C3DP Technology -- 2.1 Printing Materials and Testing -- 2.2 Process Quality Control | |
505 | 8 | |a 2.3 Design Code Compliance -- 3 Existing Challenges and Future Prospects -- 3.1 Existing Challenges -- 3.2 Future Prospects and Potential Applications -- 4 Conclusions -- References -- 13 Material Design, Additive Manufacturing, and Performance of Cement-Based Materials -- 1 Introduction -- 2 Extrusion-Based Concrete AM Process -- 3 Material Design, Extrusion Rheology, and Early-Age Properties of Additive Manufactured Concrete -- 3.1 Background -- 3.2 Material Design Approaches -- 3.3 Effect of Material Design on Extrusion Rheology and Early-Age Properties -- 3.4 Mechanical Performance of AMoC -- 3.5 Material and Machine Design for Large-Scale AMoC -- 4 Conclusions and Future Directions -- References -- 14 A Procedure Model for the Development of Construction Robots -- 1 Introduction -- 1.1 The Need for a Domain-Specific Procedure Model -- 1.2 Construction Robots: State of the Art -- 1.3 Beyond the State of the Art and Research Question -- 1.4 From STCRs Towards Modular/Multitask Construction Robots (MTCRs) -- 2 The Procedure Model -- 2.1 Procedure Models in Other Industries and Domains -- 2.2 Procedure Models for the Development of Construction Robots -- 2.3 Verification and Validation of the Model -- 3 Requirements Engineering (Act) -- 3.1 Context: Scenario, Technology, Stakeholder, and IPR Analysis -- 3.2 Task: Selection, Analysis, and Decomposition of the Task Area Foreseen for the Construction Robot -- 3.3 Strategy: Business Strategy and Scalability -- 3.4 Requirements: Co-creation, Requirements, Indicators -- 4 Development Sequence (Plan) -- 4.1 Application of Robot-Oriented Design (ROD) -- 4.2 Processes: Determine Operation Sequences and Processes -- 4.3 Detail Structure of Construction Robot -- 4.4 Modularisation and Flexibilisation -- 5 Implementation and Prototyping (Do) -- 5.1 Detailing of Integration with Existing Infrastructures | |
505 | 8 | |a 5.2 Manufacturability | |
650 | 4 | |a Construction industry-Technological innovations | |
650 | 4 | |a Construction industry | |
650 | 4 | |a Building materials | |
700 | 1 | |a Mullett, Paul |e Sonstige |4 oth | |
700 | 1 | |a Pei, Eujin |e Sonstige |4 oth | |
700 | 1 | |a Roberts, John |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Ghaffar, Seyed Hamidreza |t Innovation in Construction |d Cham : Springer International Publishing AG,c2022 |z 9783030957971 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034185113 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6938743 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185102990704640 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ghaffar, Seyed Hamidreza |
author_facet | Ghaffar, Seyed Hamidreza |
author_role | aut |
author_sort | Ghaffar, Seyed Hamidreza |
author_variant | s h g sh shg |
building | Verbundindex |
bvnumber | BV048921022 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- Part I Industry 4.0 and Drivers for Change -- 1 What Is Industry 4.0? -- 1 Additive Manufacturing -- 2 Data and Analytics -- 2.1 Construction's Historic Data Problems -- 2.2 The Development of Analysis -- 2.3 Data Use by Contractors -- 2.4 Data Use by Asset Owners -- 2.5 Data and Analytics Now-A Platform for Industry 4.0? -- 3 Artificial Intelligence -- 4 Robotics and Automation -- 5 Virtual, Augmented, Mixed, and Extended Reality -- 6 IoT and 5G -- 7 Digital Twins -- 8 Nanotechnology -- 9 Conclusions -- References -- 2 The Global Environmental Imperative -- 1 Climate Emergency -- 2 Overview of Construction industry's Contribution to Global Carbon -- 3 Carbon Mitigation Initiatives and Sustainable Development -- 4 Conclusions -- References -- 3 Industry 4.0 and Drivers for Socioeconomic Sustainability in the Construction Sector -- 1 Introduction -- 2 Population Forecasts and Urbanization Challenges Under Industry 4.0 -- 3 Construction 4.0 and Sustainable Development -- 4 Future-Proof Construction Industry: The Need for Crisis Resilience -- 5 Conclusions -- References -- 4 The Circular Construction Industry -- 1 Introduction -- 2 Principles of Circular Economy Concept -- 3 Innovative Technologies for Circular Construction -- 4 Construction and Demolition Waste Management -- 4.1 Construction and Demolition Waste Valorisation -- 5 Circular Construction Practices in the Industry -- 6 Conclusions and Prospective -- References -- Part II Innovation in Construction: A New Future for the Construction Industry. Areas of Focus for a Step Change in Construction -- 5 Fundamentals of Innovation -- 1 Introduction -- 2 Definition -- 3 Case Study 1-The de Havilland Comet -- 4 Case Study 2-Concorde -- 5 Case Study 3-Boeing 737 -- 6 Fundamentals -- 7 Conclusion -- References 6 Challenges to Innovation in Construction -- 1 Introduction -- 2 The Nature of the Product -- 2.1 Lifespan, Re-use and Embodied Carbon -- 2.2 Unique Complexity -- 2.3 Time and Trends -- 3 The Nature of the Art and Science -- 3.1 Scale -- 3.2 Materials and Methods -- 3.3 Deemed-to-satisfy Design Versus Performance-based Design -- 4 The Nature of the System -- 4.1 Industrial Lock-in -- 4.2 Fragmentation and Value Ownership -- 4.3 Regulation, Life Safety and Risk Aversion -- 4.4 Drivers for Change -- 5 Opportunities for Change -- References -- 7 Cutting-Edge Practical Research on Generative Design, IoT and Digital Twins -- 1 Introduction -- 2 Early Applications of Project Dasher in Building Operations -- 2.1 NASA Ames Sustainability Base -- 2.2 Schneider Electric's GreenOValley HQ -- 3 From Buildings to Infrastructure: Applying Dasher to Bridge Monitoring for Pier 9 and MX3D -- 4 Enhancing Privacy: Using Computer Vision to Anonymize Data Capture of Occupants and Passers-By -- 5 First Steps with Generative Design: The Airbus Bionic Partition -- 6 Designing an Office Generatively: Project Discover and Autodesk's Toronto Office -- 6.1 Evaluation Metrics -- 6.2 Design Generation -- 6.3 Design Exploration -- 6.4 Design Elaboration -- 7 Urban Scale: Applying GD for Residential Neighbourhood Layouts with Van Wijnen -- 8 The Future: Closing the Loop Between Digital Twins and Generative Design -- 9 Conclusions -- References -- 8 Artificial Intelligence and Data in Civil Engineering -- 1 Introduction -- 1.1 Background -- 1.2 What Is Data Science? -- 1.3 The Engineer as a Data Scientist -- 2 Data -- 2.1 Data Types -- 2.2 Getting Data -- 3 Artificial Intelligence -- 3.1 Overview -- 3.2 Machine Learning -- 3.3 Important Machine Learning Algorithms -- 4 Applications of Data Science in Civil Engineering -- 4.1 Predictive Maintenance -- 4.2 Surrogate Modelling 4.3 Design Automation and Parametric Design -- 4.4 Code-Based Checking -- 5 Applied Data Science -- 5.1 Specifying the Problem -- 5.2 Developing the Solution Architecture -- 5.3 Training the Models -- 5.4 Using Other Peoples Models -- 5.5 Visualisation -- 5.6 Validation -- 5.7 Verification -- 6 Practical Guidance -- 6.1 Developing Data Skills -- 6.2 When not to Do Data Science -- 6.3 Biggest Value Projects -- 6.4 When to Ask for Outside Help -- 7 Case Study-Accidental Vessel Impact for Thames Tideway Tunnel -- 7.1 Project Aim -- 7.2 Data -- 7.3 Vessel Aberrancy -- 7.4 Model Overview -- 7.5 Modelling Assumptions -- 7.6 Applied Data Science -- 8 Conclusions -- References -- 9 Potential Application of Blockchain Technology to Transform the Construction Industry -- 1 Introduction -- 2 Fundamentals of Blockchain Technology -- 2.1 Peer-to-Peer Network -- 2.2 Hashing Algorithm -- 2.3 Public-Key Cryptography -- 2.4 Consensus Mechanism -- 2.5 Blockchain Architecture -- 3 Salient Features of Blockchain -- 4 Blockchain Taxonomy: Public, Private and Consortium -- 5 Blockchain Platforms -- 6 Blockchain Applications: Blockchain 1.0, Blockchain 2.0 and Blockchain 3.0 -- 7 Blockchain Applications for the Construction Industry -- 7.1 Supply Chain Management and Logistics Management -- 7.2 Property Transactions Management -- 7.3 Documentation Management and Integration with Building Information Modelling -- 7.4 Payment and Certification -- 7.5 Contract Management -- 7.6 Facilities Management -- 7.7 Quality Assurance and Compliance -- 8 Blockchain Applications for Sustainable Construction -- 8.1 Embodied Carbon Management -- 8.2 Energy Trading and Energy Management -- 8.3 Water Trading and Water Management -- 8.4 Waste Trading and Waste Management -- 8.5 Health and Safety Management -- 9 Conclusions -- References 10 Parametric Design-A Drive Towards a Sustainable Future -- 1 Introduction -- 1.1 Parametric Modelling Versus Parametric Design -- 1.2 The Future of Parameterisation -- 2 Parametric Design Software -- 3 Basic Principles of Parametric Modelling and Design -- 3.1 The Basic Process -- 4 Parametric Modelling -- 5 Parametric Design -- 5.1 Form Finding -- 5.2 Manual Optimisation -- 5.3 Genetic Algorithm Optimisation -- 5.4 Generative Design -- 5.5 Topology Optimisation -- 6 Case Studies -- 6.1 Case Study 1: Form Finding -- 6.2 Case Study 2: Slab Optimisation -- 6.3 Case Study 3: Generative Design -- 6.4 Case Study 4: Elizabeth House Arch -- 7 Lessons Learnt -- 8 A Parametric Drive to Sustainable Design -- 8.1 Material Optimisation -- 8.2 Challenging Structural Form -- 8.3 Visualisation of Sustainable Targets -- 8.4 Modern Methods of Construction and Componentised Design -- 8.5 Integration of Existing Structure -- 8.6 Future of Materials -- 9 Concluding Thoughts -- Reference -- 11 Construction Industry Transformation Through Modular Methods -- 1 Introduction -- 2 Benefits of Modular Construction -- 3 Design Requirements of Modular Buildings -- 4 The Future of Modular Construction -- 4.1 Modular Construction Market -- 4.2 Cost Analysis -- 5 Case Studies of Modular Constructions -- 5.1 Case Studies for Residential Houses -- 5.2 Case Studies for Commercial Buildings -- 6 Innovations in Modular Construction -- 6.1 Opportunities with Composite Materials -- 6.2 Future Opportunities -- 7 Conclusions -- References -- 12 Concrete 3D Printing: Challenges and Opportunities for the Construction Industry -- 1 Introduction -- 1.1 Digital Transformation in the Construction Industry -- 1.2 Earlier Efforts Toward Automated Construction -- 1.3 Recent Developments -- 2 Current Status of the C3DP Technology -- 2.1 Printing Materials and Testing -- 2.2 Process Quality Control 2.3 Design Code Compliance -- 3 Existing Challenges and Future Prospects -- 3.1 Existing Challenges -- 3.2 Future Prospects and Potential Applications -- 4 Conclusions -- References -- 13 Material Design, Additive Manufacturing, and Performance of Cement-Based Materials -- 1 Introduction -- 2 Extrusion-Based Concrete AM Process -- 3 Material Design, Extrusion Rheology, and Early-Age Properties of Additive Manufactured Concrete -- 3.1 Background -- 3.2 Material Design Approaches -- 3.3 Effect of Material Design on Extrusion Rheology and Early-Age Properties -- 3.4 Mechanical Performance of AMoC -- 3.5 Material and Machine Design for Large-Scale AMoC -- 4 Conclusions and Future Directions -- References -- 14 A Procedure Model for the Development of Construction Robots -- 1 Introduction -- 1.1 The Need for a Domain-Specific Procedure Model -- 1.2 Construction Robots: State of the Art -- 1.3 Beyond the State of the Art and Research Question -- 1.4 From STCRs Towards Modular/Multitask Construction Robots (MTCRs) -- 2 The Procedure Model -- 2.1 Procedure Models in Other Industries and Domains -- 2.2 Procedure Models for the Development of Construction Robots -- 2.3 Verification and Validation of the Model -- 3 Requirements Engineering (Act) -- 3.1 Context: Scenario, Technology, Stakeholder, and IPR Analysis -- 3.2 Task: Selection, Analysis, and Decomposition of the Task Area Foreseen for the Construction Robot -- 3.3 Strategy: Business Strategy and Scalability -- 3.4 Requirements: Co-creation, Requirements, Indicators -- 4 Development Sequence (Plan) -- 4.1 Application of Robot-Oriented Design (ROD) -- 4.2 Processes: Determine Operation Sequences and Processes -- 4.3 Detail Structure of Construction Robot -- 4.4 Modularisation and Flexibilisation -- 5 Implementation and Prototyping (Do) -- 5.1 Detailing of Integration with Existing Infrastructures 5.2 Manufacturability |
ctrlnum | (ZDB-30-PQE)EBC6938743 (ZDB-30-PAD)EBC6938743 (ZDB-89-EBL)EBL6938743 (OCoLC)1305915726 (DE-599)BVBBV048921022 |
dewey-full | 338.4769 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 338 - Production |
dewey-raw | 338.4769 |
dewey-search | 338.4769 |
dewey-sort | 3338.4769 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11277nmm a2200505zc 4500</leader><controlfield tag="001">BV048921022</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230502s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030957988</subfield><subfield code="9">978-3-030-95798-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6938743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6938743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6938743</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1305915726</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048921022</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">338.4769</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghaffar, Seyed Hamidreza</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Innovation in Construction</subfield><subfield code="b">A Practical Guide to Transforming the Construction Industry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (466 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- Part I Industry 4.0 and Drivers for Change -- 1 What Is Industry 4.0? -- 1 Additive Manufacturing -- 2 Data and Analytics -- 2.1 Construction's Historic Data Problems -- 2.2 The Development of Analysis -- 2.3 Data Use by Contractors -- 2.4 Data Use by Asset Owners -- 2.5 Data and Analytics Now-A Platform for Industry 4.0? -- 3 Artificial Intelligence -- 4 Robotics and Automation -- 5 Virtual, Augmented, Mixed, and Extended Reality -- 6 IoT and 5G -- 7 Digital Twins -- 8 Nanotechnology -- 9 Conclusions -- References -- 2 The Global Environmental Imperative -- 1 Climate Emergency -- 2 Overview of Construction industry's Contribution to Global Carbon -- 3 Carbon Mitigation Initiatives and Sustainable Development -- 4 Conclusions -- References -- 3 Industry 4.0 and Drivers for Socioeconomic Sustainability in the Construction Sector -- 1 Introduction -- 2 Population Forecasts and Urbanization Challenges Under Industry 4.0 -- 3 Construction 4.0 and Sustainable Development -- 4 Future-Proof Construction Industry: The Need for Crisis Resilience -- 5 Conclusions -- References -- 4 The Circular Construction Industry -- 1 Introduction -- 2 Principles of Circular Economy Concept -- 3 Innovative Technologies for Circular Construction -- 4 Construction and Demolition Waste Management -- 4.1 Construction and Demolition Waste Valorisation -- 5 Circular Construction Practices in the Industry -- 6 Conclusions and Prospective -- References -- Part II Innovation in Construction: A New Future for the Construction Industry. Areas of Focus for a Step Change in Construction -- 5 Fundamentals of Innovation -- 1 Introduction -- 2 Definition -- 3 Case Study 1-The de Havilland Comet -- 4 Case Study 2-Concorde -- 5 Case Study 3-Boeing 737 -- 6 Fundamentals -- 7 Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6 Challenges to Innovation in Construction -- 1 Introduction -- 2 The Nature of the Product -- 2.1 Lifespan, Re-use and Embodied Carbon -- 2.2 Unique Complexity -- 2.3 Time and Trends -- 3 The Nature of the Art and Science -- 3.1 Scale -- 3.2 Materials and Methods -- 3.3 Deemed-to-satisfy Design Versus Performance-based Design -- 4 The Nature of the System -- 4.1 Industrial Lock-in -- 4.2 Fragmentation and Value Ownership -- 4.3 Regulation, Life Safety and Risk Aversion -- 4.4 Drivers for Change -- 5 Opportunities for Change -- References -- 7 Cutting-Edge Practical Research on Generative Design, IoT and Digital Twins -- 1 Introduction -- 2 Early Applications of Project Dasher in Building Operations -- 2.1 NASA Ames Sustainability Base -- 2.2 Schneider Electric's GreenOValley HQ -- 3 From Buildings to Infrastructure: Applying Dasher to Bridge Monitoring for Pier 9 and MX3D -- 4 Enhancing Privacy: Using Computer Vision to Anonymize Data Capture of Occupants and Passers-By -- 5 First Steps with Generative Design: The Airbus Bionic Partition -- 6 Designing an Office Generatively: Project Discover and Autodesk's Toronto Office -- 6.1 Evaluation Metrics -- 6.2 Design Generation -- 6.3 Design Exploration -- 6.4 Design Elaboration -- 7 Urban Scale: Applying GD for Residential Neighbourhood Layouts with Van Wijnen -- 8 The Future: Closing the Loop Between Digital Twins and Generative Design -- 9 Conclusions -- References -- 8 Artificial Intelligence and Data in Civil Engineering -- 1 Introduction -- 1.1 Background -- 1.2 What Is Data Science? -- 1.3 The Engineer as a Data Scientist -- 2 Data -- 2.1 Data Types -- 2.2 Getting Data -- 3 Artificial Intelligence -- 3.1 Overview -- 3.2 Machine Learning -- 3.3 Important Machine Learning Algorithms -- 4 Applications of Data Science in Civil Engineering -- 4.1 Predictive Maintenance -- 4.2 Surrogate Modelling</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3 Design Automation and Parametric Design -- 4.4 Code-Based Checking -- 5 Applied Data Science -- 5.1 Specifying the Problem -- 5.2 Developing the Solution Architecture -- 5.3 Training the Models -- 5.4 Using Other Peoples Models -- 5.5 Visualisation -- 5.6 Validation -- 5.7 Verification -- 6 Practical Guidance -- 6.1 Developing Data Skills -- 6.2 When not to Do Data Science -- 6.3 Biggest Value Projects -- 6.4 When to Ask for Outside Help -- 7 Case Study-Accidental Vessel Impact for Thames Tideway Tunnel -- 7.1 Project Aim -- 7.2 Data -- 7.3 Vessel Aberrancy -- 7.4 Model Overview -- 7.5 Modelling Assumptions -- 7.6 Applied Data Science -- 8 Conclusions -- References -- 9 Potential Application of Blockchain Technology to Transform the Construction Industry -- 1 Introduction -- 2 Fundamentals of Blockchain Technology -- 2.1 Peer-to-Peer Network -- 2.2 Hashing Algorithm -- 2.3 Public-Key Cryptography -- 2.4 Consensus Mechanism -- 2.5 Blockchain Architecture -- 3 Salient Features of Blockchain -- 4 Blockchain Taxonomy: Public, Private and Consortium -- 5 Blockchain Platforms -- 6 Blockchain Applications: Blockchain 1.0, Blockchain 2.0 and Blockchain 3.0 -- 7 Blockchain Applications for the Construction Industry -- 7.1 Supply Chain Management and Logistics Management -- 7.2 Property Transactions Management -- 7.3 Documentation Management and Integration with Building Information Modelling -- 7.4 Payment and Certification -- 7.5 Contract Management -- 7.6 Facilities Management -- 7.7 Quality Assurance and Compliance -- 8 Blockchain Applications for Sustainable Construction -- 8.1 Embodied Carbon Management -- 8.2 Energy Trading and Energy Management -- 8.3 Water Trading and Water Management -- 8.4 Waste Trading and Waste Management -- 8.5 Health and Safety Management -- 9 Conclusions -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10 Parametric Design-A Drive Towards a Sustainable Future -- 1 Introduction -- 1.1 Parametric Modelling Versus Parametric Design -- 1.2 The Future of Parameterisation -- 2 Parametric Design Software -- 3 Basic Principles of Parametric Modelling and Design -- 3.1 The Basic Process -- 4 Parametric Modelling -- 5 Parametric Design -- 5.1 Form Finding -- 5.2 Manual Optimisation -- 5.3 Genetic Algorithm Optimisation -- 5.4 Generative Design -- 5.5 Topology Optimisation -- 6 Case Studies -- 6.1 Case Study 1: Form Finding -- 6.2 Case Study 2: Slab Optimisation -- 6.3 Case Study 3: Generative Design -- 6.4 Case Study 4: Elizabeth House Arch -- 7 Lessons Learnt -- 8 A Parametric Drive to Sustainable Design -- 8.1 Material Optimisation -- 8.2 Challenging Structural Form -- 8.3 Visualisation of Sustainable Targets -- 8.4 Modern Methods of Construction and Componentised Design -- 8.5 Integration of Existing Structure -- 8.6 Future of Materials -- 9 Concluding Thoughts -- Reference -- 11 Construction Industry Transformation Through Modular Methods -- 1 Introduction -- 2 Benefits of Modular Construction -- 3 Design Requirements of Modular Buildings -- 4 The Future of Modular Construction -- 4.1 Modular Construction Market -- 4.2 Cost Analysis -- 5 Case Studies of Modular Constructions -- 5.1 Case Studies for Residential Houses -- 5.2 Case Studies for Commercial Buildings -- 6 Innovations in Modular Construction -- 6.1 Opportunities with Composite Materials -- 6.2 Future Opportunities -- 7 Conclusions -- References -- 12 Concrete 3D Printing: Challenges and Opportunities for the Construction Industry -- 1 Introduction -- 1.1 Digital Transformation in the Construction Industry -- 1.2 Earlier Efforts Toward Automated Construction -- 1.3 Recent Developments -- 2 Current Status of the C3DP Technology -- 2.1 Printing Materials and Testing -- 2.2 Process Quality Control</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Design Code Compliance -- 3 Existing Challenges and Future Prospects -- 3.1 Existing Challenges -- 3.2 Future Prospects and Potential Applications -- 4 Conclusions -- References -- 13 Material Design, Additive Manufacturing, and Performance of Cement-Based Materials -- 1 Introduction -- 2 Extrusion-Based Concrete AM Process -- 3 Material Design, Extrusion Rheology, and Early-Age Properties of Additive Manufactured Concrete -- 3.1 Background -- 3.2 Material Design Approaches -- 3.3 Effect of Material Design on Extrusion Rheology and Early-Age Properties -- 3.4 Mechanical Performance of AMoC -- 3.5 Material and Machine Design for Large-Scale AMoC -- 4 Conclusions and Future Directions -- References -- 14 A Procedure Model for the Development of Construction Robots -- 1 Introduction -- 1.1 The Need for a Domain-Specific Procedure Model -- 1.2 Construction Robots: State of the Art -- 1.3 Beyond the State of the Art and Research Question -- 1.4 From STCRs Towards Modular/Multitask Construction Robots (MTCRs) -- 2 The Procedure Model -- 2.1 Procedure Models in Other Industries and Domains -- 2.2 Procedure Models for the Development of Construction Robots -- 2.3 Verification and Validation of the Model -- 3 Requirements Engineering (Act) -- 3.1 Context: Scenario, Technology, Stakeholder, and IPR Analysis -- 3.2 Task: Selection, Analysis, and Decomposition of the Task Area Foreseen for the Construction Robot -- 3.3 Strategy: Business Strategy and Scalability -- 3.4 Requirements: Co-creation, Requirements, Indicators -- 4 Development Sequence (Plan) -- 4.1 Application of Robot-Oriented Design (ROD) -- 4.2 Processes: Determine Operation Sequences and Processes -- 4.3 Detail Structure of Construction Robot -- 4.4 Modularisation and Flexibilisation -- 5 Implementation and Prototyping (Do) -- 5.1 Detailing of Integration with Existing Infrastructures</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2 Manufacturability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction industry-Technological innovations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Construction industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Building materials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mullett, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pei, Eujin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roberts, John</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Ghaffar, Seyed Hamidreza</subfield><subfield code="t">Innovation in Construction</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030957971</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034185113</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6938743</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048921022 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:16Z |
indexdate | 2024-07-10T09:49:54Z |
institution | BVB |
isbn | 9783030957988 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034185113 |
oclc_num | 1305915726 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (466 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
spelling | Ghaffar, Seyed Hamidreza Verfasser aut Innovation in Construction A Practical Guide to Transforming the Construction Industry Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (466 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- Part I Industry 4.0 and Drivers for Change -- 1 What Is Industry 4.0? -- 1 Additive Manufacturing -- 2 Data and Analytics -- 2.1 Construction's Historic Data Problems -- 2.2 The Development of Analysis -- 2.3 Data Use by Contractors -- 2.4 Data Use by Asset Owners -- 2.5 Data and Analytics Now-A Platform for Industry 4.0? -- 3 Artificial Intelligence -- 4 Robotics and Automation -- 5 Virtual, Augmented, Mixed, and Extended Reality -- 6 IoT and 5G -- 7 Digital Twins -- 8 Nanotechnology -- 9 Conclusions -- References -- 2 The Global Environmental Imperative -- 1 Climate Emergency -- 2 Overview of Construction industry's Contribution to Global Carbon -- 3 Carbon Mitigation Initiatives and Sustainable Development -- 4 Conclusions -- References -- 3 Industry 4.0 and Drivers for Socioeconomic Sustainability in the Construction Sector -- 1 Introduction -- 2 Population Forecasts and Urbanization Challenges Under Industry 4.0 -- 3 Construction 4.0 and Sustainable Development -- 4 Future-Proof Construction Industry: The Need for Crisis Resilience -- 5 Conclusions -- References -- 4 The Circular Construction Industry -- 1 Introduction -- 2 Principles of Circular Economy Concept -- 3 Innovative Technologies for Circular Construction -- 4 Construction and Demolition Waste Management -- 4.1 Construction and Demolition Waste Valorisation -- 5 Circular Construction Practices in the Industry -- 6 Conclusions and Prospective -- References -- Part II Innovation in Construction: A New Future for the Construction Industry. Areas of Focus for a Step Change in Construction -- 5 Fundamentals of Innovation -- 1 Introduction -- 2 Definition -- 3 Case Study 1-The de Havilland Comet -- 4 Case Study 2-Concorde -- 5 Case Study 3-Boeing 737 -- 6 Fundamentals -- 7 Conclusion -- References 6 Challenges to Innovation in Construction -- 1 Introduction -- 2 The Nature of the Product -- 2.1 Lifespan, Re-use and Embodied Carbon -- 2.2 Unique Complexity -- 2.3 Time and Trends -- 3 The Nature of the Art and Science -- 3.1 Scale -- 3.2 Materials and Methods -- 3.3 Deemed-to-satisfy Design Versus Performance-based Design -- 4 The Nature of the System -- 4.1 Industrial Lock-in -- 4.2 Fragmentation and Value Ownership -- 4.3 Regulation, Life Safety and Risk Aversion -- 4.4 Drivers for Change -- 5 Opportunities for Change -- References -- 7 Cutting-Edge Practical Research on Generative Design, IoT and Digital Twins -- 1 Introduction -- 2 Early Applications of Project Dasher in Building Operations -- 2.1 NASA Ames Sustainability Base -- 2.2 Schneider Electric's GreenOValley HQ -- 3 From Buildings to Infrastructure: Applying Dasher to Bridge Monitoring for Pier 9 and MX3D -- 4 Enhancing Privacy: Using Computer Vision to Anonymize Data Capture of Occupants and Passers-By -- 5 First Steps with Generative Design: The Airbus Bionic Partition -- 6 Designing an Office Generatively: Project Discover and Autodesk's Toronto Office -- 6.1 Evaluation Metrics -- 6.2 Design Generation -- 6.3 Design Exploration -- 6.4 Design Elaboration -- 7 Urban Scale: Applying GD for Residential Neighbourhood Layouts with Van Wijnen -- 8 The Future: Closing the Loop Between Digital Twins and Generative Design -- 9 Conclusions -- References -- 8 Artificial Intelligence and Data in Civil Engineering -- 1 Introduction -- 1.1 Background -- 1.2 What Is Data Science? -- 1.3 The Engineer as a Data Scientist -- 2 Data -- 2.1 Data Types -- 2.2 Getting Data -- 3 Artificial Intelligence -- 3.1 Overview -- 3.2 Machine Learning -- 3.3 Important Machine Learning Algorithms -- 4 Applications of Data Science in Civil Engineering -- 4.1 Predictive Maintenance -- 4.2 Surrogate Modelling 4.3 Design Automation and Parametric Design -- 4.4 Code-Based Checking -- 5 Applied Data Science -- 5.1 Specifying the Problem -- 5.2 Developing the Solution Architecture -- 5.3 Training the Models -- 5.4 Using Other Peoples Models -- 5.5 Visualisation -- 5.6 Validation -- 5.7 Verification -- 6 Practical Guidance -- 6.1 Developing Data Skills -- 6.2 When not to Do Data Science -- 6.3 Biggest Value Projects -- 6.4 When to Ask for Outside Help -- 7 Case Study-Accidental Vessel Impact for Thames Tideway Tunnel -- 7.1 Project Aim -- 7.2 Data -- 7.3 Vessel Aberrancy -- 7.4 Model Overview -- 7.5 Modelling Assumptions -- 7.6 Applied Data Science -- 8 Conclusions -- References -- 9 Potential Application of Blockchain Technology to Transform the Construction Industry -- 1 Introduction -- 2 Fundamentals of Blockchain Technology -- 2.1 Peer-to-Peer Network -- 2.2 Hashing Algorithm -- 2.3 Public-Key Cryptography -- 2.4 Consensus Mechanism -- 2.5 Blockchain Architecture -- 3 Salient Features of Blockchain -- 4 Blockchain Taxonomy: Public, Private and Consortium -- 5 Blockchain Platforms -- 6 Blockchain Applications: Blockchain 1.0, Blockchain 2.0 and Blockchain 3.0 -- 7 Blockchain Applications for the Construction Industry -- 7.1 Supply Chain Management and Logistics Management -- 7.2 Property Transactions Management -- 7.3 Documentation Management and Integration with Building Information Modelling -- 7.4 Payment and Certification -- 7.5 Contract Management -- 7.6 Facilities Management -- 7.7 Quality Assurance and Compliance -- 8 Blockchain Applications for Sustainable Construction -- 8.1 Embodied Carbon Management -- 8.2 Energy Trading and Energy Management -- 8.3 Water Trading and Water Management -- 8.4 Waste Trading and Waste Management -- 8.5 Health and Safety Management -- 9 Conclusions -- References 10 Parametric Design-A Drive Towards a Sustainable Future -- 1 Introduction -- 1.1 Parametric Modelling Versus Parametric Design -- 1.2 The Future of Parameterisation -- 2 Parametric Design Software -- 3 Basic Principles of Parametric Modelling and Design -- 3.1 The Basic Process -- 4 Parametric Modelling -- 5 Parametric Design -- 5.1 Form Finding -- 5.2 Manual Optimisation -- 5.3 Genetic Algorithm Optimisation -- 5.4 Generative Design -- 5.5 Topology Optimisation -- 6 Case Studies -- 6.1 Case Study 1: Form Finding -- 6.2 Case Study 2: Slab Optimisation -- 6.3 Case Study 3: Generative Design -- 6.4 Case Study 4: Elizabeth House Arch -- 7 Lessons Learnt -- 8 A Parametric Drive to Sustainable Design -- 8.1 Material Optimisation -- 8.2 Challenging Structural Form -- 8.3 Visualisation of Sustainable Targets -- 8.4 Modern Methods of Construction and Componentised Design -- 8.5 Integration of Existing Structure -- 8.6 Future of Materials -- 9 Concluding Thoughts -- Reference -- 11 Construction Industry Transformation Through Modular Methods -- 1 Introduction -- 2 Benefits of Modular Construction -- 3 Design Requirements of Modular Buildings -- 4 The Future of Modular Construction -- 4.1 Modular Construction Market -- 4.2 Cost Analysis -- 5 Case Studies of Modular Constructions -- 5.1 Case Studies for Residential Houses -- 5.2 Case Studies for Commercial Buildings -- 6 Innovations in Modular Construction -- 6.1 Opportunities with Composite Materials -- 6.2 Future Opportunities -- 7 Conclusions -- References -- 12 Concrete 3D Printing: Challenges and Opportunities for the Construction Industry -- 1 Introduction -- 1.1 Digital Transformation in the Construction Industry -- 1.2 Earlier Efforts Toward Automated Construction -- 1.3 Recent Developments -- 2 Current Status of the C3DP Technology -- 2.1 Printing Materials and Testing -- 2.2 Process Quality Control 2.3 Design Code Compliance -- 3 Existing Challenges and Future Prospects -- 3.1 Existing Challenges -- 3.2 Future Prospects and Potential Applications -- 4 Conclusions -- References -- 13 Material Design, Additive Manufacturing, and Performance of Cement-Based Materials -- 1 Introduction -- 2 Extrusion-Based Concrete AM Process -- 3 Material Design, Extrusion Rheology, and Early-Age Properties of Additive Manufactured Concrete -- 3.1 Background -- 3.2 Material Design Approaches -- 3.3 Effect of Material Design on Extrusion Rheology and Early-Age Properties -- 3.4 Mechanical Performance of AMoC -- 3.5 Material and Machine Design for Large-Scale AMoC -- 4 Conclusions and Future Directions -- References -- 14 A Procedure Model for the Development of Construction Robots -- 1 Introduction -- 1.1 The Need for a Domain-Specific Procedure Model -- 1.2 Construction Robots: State of the Art -- 1.3 Beyond the State of the Art and Research Question -- 1.4 From STCRs Towards Modular/Multitask Construction Robots (MTCRs) -- 2 The Procedure Model -- 2.1 Procedure Models in Other Industries and Domains -- 2.2 Procedure Models for the Development of Construction Robots -- 2.3 Verification and Validation of the Model -- 3 Requirements Engineering (Act) -- 3.1 Context: Scenario, Technology, Stakeholder, and IPR Analysis -- 3.2 Task: Selection, Analysis, and Decomposition of the Task Area Foreseen for the Construction Robot -- 3.3 Strategy: Business Strategy and Scalability -- 3.4 Requirements: Co-creation, Requirements, Indicators -- 4 Development Sequence (Plan) -- 4.1 Application of Robot-Oriented Design (ROD) -- 4.2 Processes: Determine Operation Sequences and Processes -- 4.3 Detail Structure of Construction Robot -- 4.4 Modularisation and Flexibilisation -- 5 Implementation and Prototyping (Do) -- 5.1 Detailing of Integration with Existing Infrastructures 5.2 Manufacturability Construction industry-Technological innovations Construction industry Building materials Mullett, Paul Sonstige oth Pei, Eujin Sonstige oth Roberts, John Sonstige oth Erscheint auch als Druck-Ausgabe Ghaffar, Seyed Hamidreza Innovation in Construction Cham : Springer International Publishing AG,c2022 9783030957971 |
spellingShingle | Ghaffar, Seyed Hamidreza Innovation in Construction A Practical Guide to Transforming the Construction Industry Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- Part I Industry 4.0 and Drivers for Change -- 1 What Is Industry 4.0? -- 1 Additive Manufacturing -- 2 Data and Analytics -- 2.1 Construction's Historic Data Problems -- 2.2 The Development of Analysis -- 2.3 Data Use by Contractors -- 2.4 Data Use by Asset Owners -- 2.5 Data and Analytics Now-A Platform for Industry 4.0? -- 3 Artificial Intelligence -- 4 Robotics and Automation -- 5 Virtual, Augmented, Mixed, and Extended Reality -- 6 IoT and 5G -- 7 Digital Twins -- 8 Nanotechnology -- 9 Conclusions -- References -- 2 The Global Environmental Imperative -- 1 Climate Emergency -- 2 Overview of Construction industry's Contribution to Global Carbon -- 3 Carbon Mitigation Initiatives and Sustainable Development -- 4 Conclusions -- References -- 3 Industry 4.0 and Drivers for Socioeconomic Sustainability in the Construction Sector -- 1 Introduction -- 2 Population Forecasts and Urbanization Challenges Under Industry 4.0 -- 3 Construction 4.0 and Sustainable Development -- 4 Future-Proof Construction Industry: The Need for Crisis Resilience -- 5 Conclusions -- References -- 4 The Circular Construction Industry -- 1 Introduction -- 2 Principles of Circular Economy Concept -- 3 Innovative Technologies for Circular Construction -- 4 Construction and Demolition Waste Management -- 4.1 Construction and Demolition Waste Valorisation -- 5 Circular Construction Practices in the Industry -- 6 Conclusions and Prospective -- References -- Part II Innovation in Construction: A New Future for the Construction Industry. Areas of Focus for a Step Change in Construction -- 5 Fundamentals of Innovation -- 1 Introduction -- 2 Definition -- 3 Case Study 1-The de Havilland Comet -- 4 Case Study 2-Concorde -- 5 Case Study 3-Boeing 737 -- 6 Fundamentals -- 7 Conclusion -- References 6 Challenges to Innovation in Construction -- 1 Introduction -- 2 The Nature of the Product -- 2.1 Lifespan, Re-use and Embodied Carbon -- 2.2 Unique Complexity -- 2.3 Time and Trends -- 3 The Nature of the Art and Science -- 3.1 Scale -- 3.2 Materials and Methods -- 3.3 Deemed-to-satisfy Design Versus Performance-based Design -- 4 The Nature of the System -- 4.1 Industrial Lock-in -- 4.2 Fragmentation and Value Ownership -- 4.3 Regulation, Life Safety and Risk Aversion -- 4.4 Drivers for Change -- 5 Opportunities for Change -- References -- 7 Cutting-Edge Practical Research on Generative Design, IoT and Digital Twins -- 1 Introduction -- 2 Early Applications of Project Dasher in Building Operations -- 2.1 NASA Ames Sustainability Base -- 2.2 Schneider Electric's GreenOValley HQ -- 3 From Buildings to Infrastructure: Applying Dasher to Bridge Monitoring for Pier 9 and MX3D -- 4 Enhancing Privacy: Using Computer Vision to Anonymize Data Capture of Occupants and Passers-By -- 5 First Steps with Generative Design: The Airbus Bionic Partition -- 6 Designing an Office Generatively: Project Discover and Autodesk's Toronto Office -- 6.1 Evaluation Metrics -- 6.2 Design Generation -- 6.3 Design Exploration -- 6.4 Design Elaboration -- 7 Urban Scale: Applying GD for Residential Neighbourhood Layouts with Van Wijnen -- 8 The Future: Closing the Loop Between Digital Twins and Generative Design -- 9 Conclusions -- References -- 8 Artificial Intelligence and Data in Civil Engineering -- 1 Introduction -- 1.1 Background -- 1.2 What Is Data Science? -- 1.3 The Engineer as a Data Scientist -- 2 Data -- 2.1 Data Types -- 2.2 Getting Data -- 3 Artificial Intelligence -- 3.1 Overview -- 3.2 Machine Learning -- 3.3 Important Machine Learning Algorithms -- 4 Applications of Data Science in Civil Engineering -- 4.1 Predictive Maintenance -- 4.2 Surrogate Modelling 4.3 Design Automation and Parametric Design -- 4.4 Code-Based Checking -- 5 Applied Data Science -- 5.1 Specifying the Problem -- 5.2 Developing the Solution Architecture -- 5.3 Training the Models -- 5.4 Using Other Peoples Models -- 5.5 Visualisation -- 5.6 Validation -- 5.7 Verification -- 6 Practical Guidance -- 6.1 Developing Data Skills -- 6.2 When not to Do Data Science -- 6.3 Biggest Value Projects -- 6.4 When to Ask for Outside Help -- 7 Case Study-Accidental Vessel Impact for Thames Tideway Tunnel -- 7.1 Project Aim -- 7.2 Data -- 7.3 Vessel Aberrancy -- 7.4 Model Overview -- 7.5 Modelling Assumptions -- 7.6 Applied Data Science -- 8 Conclusions -- References -- 9 Potential Application of Blockchain Technology to Transform the Construction Industry -- 1 Introduction -- 2 Fundamentals of Blockchain Technology -- 2.1 Peer-to-Peer Network -- 2.2 Hashing Algorithm -- 2.3 Public-Key Cryptography -- 2.4 Consensus Mechanism -- 2.5 Blockchain Architecture -- 3 Salient Features of Blockchain -- 4 Blockchain Taxonomy: Public, Private and Consortium -- 5 Blockchain Platforms -- 6 Blockchain Applications: Blockchain 1.0, Blockchain 2.0 and Blockchain 3.0 -- 7 Blockchain Applications for the Construction Industry -- 7.1 Supply Chain Management and Logistics Management -- 7.2 Property Transactions Management -- 7.3 Documentation Management and Integration with Building Information Modelling -- 7.4 Payment and Certification -- 7.5 Contract Management -- 7.6 Facilities Management -- 7.7 Quality Assurance and Compliance -- 8 Blockchain Applications for Sustainable Construction -- 8.1 Embodied Carbon Management -- 8.2 Energy Trading and Energy Management -- 8.3 Water Trading and Water Management -- 8.4 Waste Trading and Waste Management -- 8.5 Health and Safety Management -- 9 Conclusions -- References 10 Parametric Design-A Drive Towards a Sustainable Future -- 1 Introduction -- 1.1 Parametric Modelling Versus Parametric Design -- 1.2 The Future of Parameterisation -- 2 Parametric Design Software -- 3 Basic Principles of Parametric Modelling and Design -- 3.1 The Basic Process -- 4 Parametric Modelling -- 5 Parametric Design -- 5.1 Form Finding -- 5.2 Manual Optimisation -- 5.3 Genetic Algorithm Optimisation -- 5.4 Generative Design -- 5.5 Topology Optimisation -- 6 Case Studies -- 6.1 Case Study 1: Form Finding -- 6.2 Case Study 2: Slab Optimisation -- 6.3 Case Study 3: Generative Design -- 6.4 Case Study 4: Elizabeth House Arch -- 7 Lessons Learnt -- 8 A Parametric Drive to Sustainable Design -- 8.1 Material Optimisation -- 8.2 Challenging Structural Form -- 8.3 Visualisation of Sustainable Targets -- 8.4 Modern Methods of Construction and Componentised Design -- 8.5 Integration of Existing Structure -- 8.6 Future of Materials -- 9 Concluding Thoughts -- Reference -- 11 Construction Industry Transformation Through Modular Methods -- 1 Introduction -- 2 Benefits of Modular Construction -- 3 Design Requirements of Modular Buildings -- 4 The Future of Modular Construction -- 4.1 Modular Construction Market -- 4.2 Cost Analysis -- 5 Case Studies of Modular Constructions -- 5.1 Case Studies for Residential Houses -- 5.2 Case Studies for Commercial Buildings -- 6 Innovations in Modular Construction -- 6.1 Opportunities with Composite Materials -- 6.2 Future Opportunities -- 7 Conclusions -- References -- 12 Concrete 3D Printing: Challenges and Opportunities for the Construction Industry -- 1 Introduction -- 1.1 Digital Transformation in the Construction Industry -- 1.2 Earlier Efforts Toward Automated Construction -- 1.3 Recent Developments -- 2 Current Status of the C3DP Technology -- 2.1 Printing Materials and Testing -- 2.2 Process Quality Control 2.3 Design Code Compliance -- 3 Existing Challenges and Future Prospects -- 3.1 Existing Challenges -- 3.2 Future Prospects and Potential Applications -- 4 Conclusions -- References -- 13 Material Design, Additive Manufacturing, and Performance of Cement-Based Materials -- 1 Introduction -- 2 Extrusion-Based Concrete AM Process -- 3 Material Design, Extrusion Rheology, and Early-Age Properties of Additive Manufactured Concrete -- 3.1 Background -- 3.2 Material Design Approaches -- 3.3 Effect of Material Design on Extrusion Rheology and Early-Age Properties -- 3.4 Mechanical Performance of AMoC -- 3.5 Material and Machine Design for Large-Scale AMoC -- 4 Conclusions and Future Directions -- References -- 14 A Procedure Model for the Development of Construction Robots -- 1 Introduction -- 1.1 The Need for a Domain-Specific Procedure Model -- 1.2 Construction Robots: State of the Art -- 1.3 Beyond the State of the Art and Research Question -- 1.4 From STCRs Towards Modular/Multitask Construction Robots (MTCRs) -- 2 The Procedure Model -- 2.1 Procedure Models in Other Industries and Domains -- 2.2 Procedure Models for the Development of Construction Robots -- 2.3 Verification and Validation of the Model -- 3 Requirements Engineering (Act) -- 3.1 Context: Scenario, Technology, Stakeholder, and IPR Analysis -- 3.2 Task: Selection, Analysis, and Decomposition of the Task Area Foreseen for the Construction Robot -- 3.3 Strategy: Business Strategy and Scalability -- 3.4 Requirements: Co-creation, Requirements, Indicators -- 4 Development Sequence (Plan) -- 4.1 Application of Robot-Oriented Design (ROD) -- 4.2 Processes: Determine Operation Sequences and Processes -- 4.3 Detail Structure of Construction Robot -- 4.4 Modularisation and Flexibilisation -- 5 Implementation and Prototyping (Do) -- 5.1 Detailing of Integration with Existing Infrastructures 5.2 Manufacturability Construction industry-Technological innovations Construction industry Building materials |
title | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_auth | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_exact_search | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_exact_search_txtP | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_full | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_fullStr | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_full_unstemmed | Innovation in Construction A Practical Guide to Transforming the Construction Industry |
title_short | Innovation in Construction |
title_sort | innovation in construction a practical guide to transforming the construction industry |
title_sub | A Practical Guide to Transforming the Construction Industry |
topic | Construction industry-Technological innovations Construction industry Building materials |
topic_facet | Construction industry-Technological innovations Construction industry Building materials |
work_keys_str_mv | AT ghaffarseyedhamidreza innovationinconstructionapracticalguidetotransformingtheconstructionindustry AT mullettpaul innovationinconstructionapracticalguidetotransformingtheconstructionindustry AT peieujin innovationinconstructionapracticalguidetotransformingtheconstructionindustry AT robertsjohn innovationinconstructionapracticalguidetotransformingtheconstructionindustry |