Digital Maintenance Management: Guiding Digital Transformation in Maintenance
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schriftenreihe: | Springer Series in Reliability Engineering Series
|
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (183 Seiten) |
ISBN: | 9783030976606 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048921005 | ||
003 | DE-604 | ||
005 | 20240524 | ||
007 | cr|uuu---uuuuu | ||
008 | 230502s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783030976606 |9 978-3-030-97660-6 | ||
035 | |a (ZDB-30-PQE)EBC6922462 | ||
035 | |a (ZDB-30-PAD)EBC6922462 | ||
035 | |a (ZDB-89-EBL)EBL6922462 | ||
035 | |a (OCoLC)1303574602 | ||
035 | |a (DE-599)BVBBV048921005 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.202 | |
100 | 1 | |a Crespo Márquez, Adolfo |e Verfasser |0 (DE-588)1234106639 |4 aut | |
245 | 1 | 0 | |a Digital Maintenance Management |b Guiding Digital Transformation in Maintenance |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (183 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Reliability Engineering Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Foreword -- Acknowledgements -- Overview -- Relevant Topics -- Structure of the Book -- Contents -- Part I Fundamental Concepts to Understand Digital Transformation Benefits -- 1 Benefits of Digital Transformation for Maintenance Management Systems. Market Trends -- 1.1 Introduction -- 1.2 Key Managerial Areas That Can Be Digitally Supported -- 1.3 Emerging Asset Management Systems APM & -- AIP -- 1.4 The New Am Systems/Platforms Architecture -- References -- 2 A Review of New Digital Technologies Impacting Maintenance Management -- 2.1 Introduction -- 2.2 The 'Internet of Things' (IOT) Technologies -- 2.3 Big Data -- 2.4 Predictive Analytics -- 2.5 Digital Twin Simulations -- 2.6 Augmented Reality -- 2.7 Business Intelligence and Data Visualization Tools -- 2.8 Complementary Technologies -- References -- Part II The Pillars for Digital Maintenance Management Excellence -- 3 Driving the Introduction of Digital Technologies to Enhance the Maintenance Management Process and Framework -- 3.1 Introduction -- 3.2 Starting from the Mm Process and Framework -- 3.3 New Opportunities with Data Availability and Analitycs -- 3.4 Visualizing the New Digital Maintenance Management Framework -- 3.5 The Need for a Business Asset Data Model -- References -- 4 The Definition of the Asset Data Model -- 4.1 Introduction -- 4.2 Methodology Proof of Concept: Data Model for a Criticality Analysis App -- References -- Part III Developments in Advanced Maintenance Management Apps -- 5 Advanced Asset Performance Management (APM) and Asset Investment Planning (AIP) Systems -- 5.1 The APM Toolbox Approach to Asset Maintenance -- 5.1.1 GE Digital's Predix Asset Performance Management -- 5.1.2 SAP APM Solution -- 5.1.3 Siemens APM Products -- 5.1.4 IBM APM Portfolio -- 5.2 The Asset Investment Planning (AIP) Solutions -- 5.2.1 Copperleaf Decision Analytics | |
505 | 8 | |a 5.2.2 The Cosmo Tech Hybrid Approach -- References -- Part IV Technical Challenges in the Use of Digital Technologies for Maintenance -- 6 The Non-ergodicity of Assets -- 6.1 Introduction to the Problem -- 6.2 A Case Study for Train Bearings -- 6.2.1 Axel Bearing Position Model (ML Model 1) -- 6.2.2 Train Bearing Position Model (ML Model 2) -- 6.2.3 Fleet Bearing Position Model (ML Model 3) -- 6.2.4 Testing and Validating the Models with Different Data -- 6.2.5 Conclusions of the Case Study -- References -- 7 The Curse of Dimensionality -- 7.1 Introduction to the Problem -- 7.2 Feature Selection Methods -- 7.3 The Use of Classifiers to Identify Failure Modes -- 7.4 Case Study: Cryogenic Reciprocating Compressors -- 7.4.1 Introduction to the Industrial Process -- 7.4.2 The Design of a CBM Strategy for the Compressors -- 7.4.3 The Selection of Features -- 7.4.4 The Results of the Analysis -- 7.4.5 Discussion of Results -- 7.5 Conclusions -- References -- 8 The Dynamic Measurement of Failure Risk -- 8.1 Introduction to the Problem -- 8.2 Dynamic Risk Level Assessment in Literature -- 8.3 Risk Management (RM), Assessment (RA) and Analysis (RAn) -- 8.4 Introduction to Dynamic Risk Assessment (DRA) -- 8.5 A Failure Mode Dra Method -- 8.6 Final Remarks -- References -- 9 The Dynamic Scheduling of Maintenance -- 9.1 Introduction -- 9.2 CBM Applied to Multi-component Systems -- 9.3 Fleet Maintenance Scheduling -- 9.4 Case Study. Scheduling Train Components' CBM -- 9.4.1 Introduction to the Problem -- 9.4.2 Building the Continuous Time Simulation Model -- 9.4.3 Implementation of a Practical Model in Vensim -- 9.4.4 Conclusions of the Case Study -- 9.5 Conclusions -- References -- Part V Emerging Data-Driven Processes for Asset Performance Management (APM) -- 10 Techniques for Anomalies Detection -- 10.1 Introduction | |
505 | 8 | |a 10.2 Anomalies Detection in Train Bearings -- 10.3 Baseline Analytics Selection -- 10.4 Anomalies Detection Model Implementation -- 10.5 Discussion of Results -- References -- 11 Asset Condition and Operations Efficiency -- 11.1 Introduction -- 11.2 Case Study. Efficiency in Renewable Energy Generation -- 11.2.1 Reviewing the Use of Predictive Techniques -- 11.2.2 Case Study Development -- 11.2.3 Case Study Conclusions -- 11.3 Case Study. LNG Storage Tank Pump Operation Analysis -- 11.3.1 Using Data Mining Together with Predictive Analytics -- 11.3.2 An Introduction to the DM AR Technique -- 11.3.3 The Emerging APM and Reliability Asessment Process -- 11.3.4 Presenting the Process Results -- 11.3.5 Case Study Conclusions -- References -- Part VI Emerging Data-Driven Processes for Asset Investment Planning (AIP) -- 12 Asset Health Indexing and Life Cycle Costing -- 12.1 Introduction -- 12.2 AHI Modelling Methodology -- 12.3 Life Cycle Costing Modelling Methodology -- 12.4 Case Study. Lng Regassification Plant -- 12.4.1 Asset Expense Profile Based on Its Health Index -- 12.4.2 Industrial Case Results and Findings -- References | |
650 | 4 | |a Plant maintenance-Data processing | |
650 | 4 | |a Plant maintenance-Management | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Crespo Márquez, Adolfo |t Digital Maintenance Management |d Cham : Springer International Publishing AG,c2022 |z 978-3-030-97659-0 |
912 | |a ZDB-30-PQE | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6922462 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1805073323053285376 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Crespo Márquez, Adolfo |
author_GND | (DE-588)1234106639 |
author_facet | Crespo Márquez, Adolfo |
author_role | aut |
author_sort | Crespo Márquez, Adolfo |
author_variant | m a c ma mac |
building | Verbundindex |
bvnumber | BV048921005 |
collection | ZDB-30-PQE |
contents | Intro -- Foreword -- Acknowledgements -- Overview -- Relevant Topics -- Structure of the Book -- Contents -- Part I Fundamental Concepts to Understand Digital Transformation Benefits -- 1 Benefits of Digital Transformation for Maintenance Management Systems. Market Trends -- 1.1 Introduction -- 1.2 Key Managerial Areas That Can Be Digitally Supported -- 1.3 Emerging Asset Management Systems APM & -- AIP -- 1.4 The New Am Systems/Platforms Architecture -- References -- 2 A Review of New Digital Technologies Impacting Maintenance Management -- 2.1 Introduction -- 2.2 The 'Internet of Things' (IOT) Technologies -- 2.3 Big Data -- 2.4 Predictive Analytics -- 2.5 Digital Twin Simulations -- 2.6 Augmented Reality -- 2.7 Business Intelligence and Data Visualization Tools -- 2.8 Complementary Technologies -- References -- Part II The Pillars for Digital Maintenance Management Excellence -- 3 Driving the Introduction of Digital Technologies to Enhance the Maintenance Management Process and Framework -- 3.1 Introduction -- 3.2 Starting from the Mm Process and Framework -- 3.3 New Opportunities with Data Availability and Analitycs -- 3.4 Visualizing the New Digital Maintenance Management Framework -- 3.5 The Need for a Business Asset Data Model -- References -- 4 The Definition of the Asset Data Model -- 4.1 Introduction -- 4.2 Methodology Proof of Concept: Data Model for a Criticality Analysis App -- References -- Part III Developments in Advanced Maintenance Management Apps -- 5 Advanced Asset Performance Management (APM) and Asset Investment Planning (AIP) Systems -- 5.1 The APM Toolbox Approach to Asset Maintenance -- 5.1.1 GE Digital's Predix Asset Performance Management -- 5.1.2 SAP APM Solution -- 5.1.3 Siemens APM Products -- 5.1.4 IBM APM Portfolio -- 5.2 The Asset Investment Planning (AIP) Solutions -- 5.2.1 Copperleaf Decision Analytics 5.2.2 The Cosmo Tech Hybrid Approach -- References -- Part IV Technical Challenges in the Use of Digital Technologies for Maintenance -- 6 The Non-ergodicity of Assets -- 6.1 Introduction to the Problem -- 6.2 A Case Study for Train Bearings -- 6.2.1 Axel Bearing Position Model (ML Model 1) -- 6.2.2 Train Bearing Position Model (ML Model 2) -- 6.2.3 Fleet Bearing Position Model (ML Model 3) -- 6.2.4 Testing and Validating the Models with Different Data -- 6.2.5 Conclusions of the Case Study -- References -- 7 The Curse of Dimensionality -- 7.1 Introduction to the Problem -- 7.2 Feature Selection Methods -- 7.3 The Use of Classifiers to Identify Failure Modes -- 7.4 Case Study: Cryogenic Reciprocating Compressors -- 7.4.1 Introduction to the Industrial Process -- 7.4.2 The Design of a CBM Strategy for the Compressors -- 7.4.3 The Selection of Features -- 7.4.4 The Results of the Analysis -- 7.4.5 Discussion of Results -- 7.5 Conclusions -- References -- 8 The Dynamic Measurement of Failure Risk -- 8.1 Introduction to the Problem -- 8.2 Dynamic Risk Level Assessment in Literature -- 8.3 Risk Management (RM), Assessment (RA) and Analysis (RAn) -- 8.4 Introduction to Dynamic Risk Assessment (DRA) -- 8.5 A Failure Mode Dra Method -- 8.6 Final Remarks -- References -- 9 The Dynamic Scheduling of Maintenance -- 9.1 Introduction -- 9.2 CBM Applied to Multi-component Systems -- 9.3 Fleet Maintenance Scheduling -- 9.4 Case Study. Scheduling Train Components' CBM -- 9.4.1 Introduction to the Problem -- 9.4.2 Building the Continuous Time Simulation Model -- 9.4.3 Implementation of a Practical Model in Vensim -- 9.4.4 Conclusions of the Case Study -- 9.5 Conclusions -- References -- Part V Emerging Data-Driven Processes for Asset Performance Management (APM) -- 10 Techniques for Anomalies Detection -- 10.1 Introduction 10.2 Anomalies Detection in Train Bearings -- 10.3 Baseline Analytics Selection -- 10.4 Anomalies Detection Model Implementation -- 10.5 Discussion of Results -- References -- 11 Asset Condition and Operations Efficiency -- 11.1 Introduction -- 11.2 Case Study. Efficiency in Renewable Energy Generation -- 11.2.1 Reviewing the Use of Predictive Techniques -- 11.2.2 Case Study Development -- 11.2.3 Case Study Conclusions -- 11.3 Case Study. LNG Storage Tank Pump Operation Analysis -- 11.3.1 Using Data Mining Together with Predictive Analytics -- 11.3.2 An Introduction to the DM AR Technique -- 11.3.3 The Emerging APM and Reliability Asessment Process -- 11.3.4 Presenting the Process Results -- 11.3.5 Case Study Conclusions -- References -- Part VI Emerging Data-Driven Processes for Asset Investment Planning (AIP) -- 12 Asset Health Indexing and Life Cycle Costing -- 12.1 Introduction -- 12.2 AHI Modelling Methodology -- 12.3 Life Cycle Costing Modelling Methodology -- 12.4 Case Study. Lng Regassification Plant -- 12.4.1 Asset Expense Profile Based on Its Health Index -- 12.4.2 Industrial Case Results and Findings -- References |
ctrlnum | (ZDB-30-PQE)EBC6922462 (ZDB-30-PAD)EBC6922462 (ZDB-89-EBL)EBL6922462 (OCoLC)1303574602 (DE-599)BVBBV048921005 |
dewey-full | 658.202 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.202 |
dewey-search | 658.202 |
dewey-sort | 3658.202 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048921005</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240524</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230502s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030976606</subfield><subfield code="9">978-3-030-97660-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6922462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6922462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6922462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1303574602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048921005</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.202</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crespo Márquez, Adolfo</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1234106639</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital Maintenance Management</subfield><subfield code="b">Guiding Digital Transformation in Maintenance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (183 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Reliability Engineering Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Foreword -- Acknowledgements -- Overview -- Relevant Topics -- Structure of the Book -- Contents -- Part I Fundamental Concepts to Understand Digital Transformation Benefits -- 1 Benefits of Digital Transformation for Maintenance Management Systems. Market Trends -- 1.1 Introduction -- 1.2 Key Managerial Areas That Can Be Digitally Supported -- 1.3 Emerging Asset Management Systems APM &amp -- AIP -- 1.4 The New Am Systems/Platforms Architecture -- References -- 2 A Review of New Digital Technologies Impacting Maintenance Management -- 2.1 Introduction -- 2.2 The 'Internet of Things' (IOT) Technologies -- 2.3 Big Data -- 2.4 Predictive Analytics -- 2.5 Digital Twin Simulations -- 2.6 Augmented Reality -- 2.7 Business Intelligence and Data Visualization Tools -- 2.8 Complementary Technologies -- References -- Part II The Pillars for Digital Maintenance Management Excellence -- 3 Driving the Introduction of Digital Technologies to Enhance the Maintenance Management Process and Framework -- 3.1 Introduction -- 3.2 Starting from the Mm Process and Framework -- 3.3 New Opportunities with Data Availability and Analitycs -- 3.4 Visualizing the New Digital Maintenance Management Framework -- 3.5 The Need for a Business Asset Data Model -- References -- 4 The Definition of the Asset Data Model -- 4.1 Introduction -- 4.2 Methodology Proof of Concept: Data Model for a Criticality Analysis App -- References -- Part III Developments in Advanced Maintenance Management Apps -- 5 Advanced Asset Performance Management (APM) and Asset Investment Planning (AIP) Systems -- 5.1 The APM Toolbox Approach to Asset Maintenance -- 5.1.1 GE Digital's Predix Asset Performance Management -- 5.1.2 SAP APM Solution -- 5.1.3 Siemens APM Products -- 5.1.4 IBM APM Portfolio -- 5.2 The Asset Investment Planning (AIP) Solutions -- 5.2.1 Copperleaf Decision Analytics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.2 The Cosmo Tech Hybrid Approach -- References -- Part IV Technical Challenges in the Use of Digital Technologies for Maintenance -- 6 The Non-ergodicity of Assets -- 6.1 Introduction to the Problem -- 6.2 A Case Study for Train Bearings -- 6.2.1 Axel Bearing Position Model (ML Model 1) -- 6.2.2 Train Bearing Position Model (ML Model 2) -- 6.2.3 Fleet Bearing Position Model (ML Model 3) -- 6.2.4 Testing and Validating the Models with Different Data -- 6.2.5 Conclusions of the Case Study -- References -- 7 The Curse of Dimensionality -- 7.1 Introduction to the Problem -- 7.2 Feature Selection Methods -- 7.3 The Use of Classifiers to Identify Failure Modes -- 7.4 Case Study: Cryogenic Reciprocating Compressors -- 7.4.1 Introduction to the Industrial Process -- 7.4.2 The Design of a CBM Strategy for the Compressors -- 7.4.3 The Selection of Features -- 7.4.4 The Results of the Analysis -- 7.4.5 Discussion of Results -- 7.5 Conclusions -- References -- 8 The Dynamic Measurement of Failure Risk -- 8.1 Introduction to the Problem -- 8.2 Dynamic Risk Level Assessment in Literature -- 8.3 Risk Management (RM), Assessment (RA) and Analysis (RAn) -- 8.4 Introduction to Dynamic Risk Assessment (DRA) -- 8.5 A Failure Mode Dra Method -- 8.6 Final Remarks -- References -- 9 The Dynamic Scheduling of Maintenance -- 9.1 Introduction -- 9.2 CBM Applied to Multi-component Systems -- 9.3 Fleet Maintenance Scheduling -- 9.4 Case Study. Scheduling Train Components' CBM -- 9.4.1 Introduction to the Problem -- 9.4.2 Building the Continuous Time Simulation Model -- 9.4.3 Implementation of a Practical Model in Vensim -- 9.4.4 Conclusions of the Case Study -- 9.5 Conclusions -- References -- Part V Emerging Data-Driven Processes for Asset Performance Management (APM) -- 10 Techniques for Anomalies Detection -- 10.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.2 Anomalies Detection in Train Bearings -- 10.3 Baseline Analytics Selection -- 10.4 Anomalies Detection Model Implementation -- 10.5 Discussion of Results -- References -- 11 Asset Condition and Operations Efficiency -- 11.1 Introduction -- 11.2 Case Study. Efficiency in Renewable Energy Generation -- 11.2.1 Reviewing the Use of Predictive Techniques -- 11.2.2 Case Study Development -- 11.2.3 Case Study Conclusions -- 11.3 Case Study. LNG Storage Tank Pump Operation Analysis -- 11.3.1 Using Data Mining Together with Predictive Analytics -- 11.3.2 An Introduction to the DM AR Technique -- 11.3.3 The Emerging APM and Reliability Asessment Process -- 11.3.4 Presenting the Process Results -- 11.3.5 Case Study Conclusions -- References -- Part VI Emerging Data-Driven Processes for Asset Investment Planning (AIP) -- 12 Asset Health Indexing and Life Cycle Costing -- 12.1 Introduction -- 12.2 AHI Modelling Methodology -- 12.3 Life Cycle Costing Modelling Methodology -- 12.4 Case Study. Lng Regassification Plant -- 12.4.1 Asset Expense Profile Based on Its Health Index -- 12.4.2 Industrial Case Results and Findings -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant maintenance-Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant maintenance-Management</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Crespo Márquez, Adolfo</subfield><subfield code="t">Digital Maintenance Management</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">978-3-030-97659-0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6922462</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048921005 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:16Z |
indexdate | 2024-07-20T05:07:47Z |
institution | BVB |
isbn | 9783030976606 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034185096 |
oclc_num | 1303574602 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (183 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Springer Series in Reliability Engineering Series |
spelling | Crespo Márquez, Adolfo Verfasser (DE-588)1234106639 aut Digital Maintenance Management Guiding Digital Transformation in Maintenance Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (183 Seiten) txt rdacontent c rdamedia cr rdacarrier Springer Series in Reliability Engineering Series Description based on publisher supplied metadata and other sources Intro -- Foreword -- Acknowledgements -- Overview -- Relevant Topics -- Structure of the Book -- Contents -- Part I Fundamental Concepts to Understand Digital Transformation Benefits -- 1 Benefits of Digital Transformation for Maintenance Management Systems. Market Trends -- 1.1 Introduction -- 1.2 Key Managerial Areas That Can Be Digitally Supported -- 1.3 Emerging Asset Management Systems APM & -- AIP -- 1.4 The New Am Systems/Platforms Architecture -- References -- 2 A Review of New Digital Technologies Impacting Maintenance Management -- 2.1 Introduction -- 2.2 The 'Internet of Things' (IOT) Technologies -- 2.3 Big Data -- 2.4 Predictive Analytics -- 2.5 Digital Twin Simulations -- 2.6 Augmented Reality -- 2.7 Business Intelligence and Data Visualization Tools -- 2.8 Complementary Technologies -- References -- Part II The Pillars for Digital Maintenance Management Excellence -- 3 Driving the Introduction of Digital Technologies to Enhance the Maintenance Management Process and Framework -- 3.1 Introduction -- 3.2 Starting from the Mm Process and Framework -- 3.3 New Opportunities with Data Availability and Analitycs -- 3.4 Visualizing the New Digital Maintenance Management Framework -- 3.5 The Need for a Business Asset Data Model -- References -- 4 The Definition of the Asset Data Model -- 4.1 Introduction -- 4.2 Methodology Proof of Concept: Data Model for a Criticality Analysis App -- References -- Part III Developments in Advanced Maintenance Management Apps -- 5 Advanced Asset Performance Management (APM) and Asset Investment Planning (AIP) Systems -- 5.1 The APM Toolbox Approach to Asset Maintenance -- 5.1.1 GE Digital's Predix Asset Performance Management -- 5.1.2 SAP APM Solution -- 5.1.3 Siemens APM Products -- 5.1.4 IBM APM Portfolio -- 5.2 The Asset Investment Planning (AIP) Solutions -- 5.2.1 Copperleaf Decision Analytics 5.2.2 The Cosmo Tech Hybrid Approach -- References -- Part IV Technical Challenges in the Use of Digital Technologies for Maintenance -- 6 The Non-ergodicity of Assets -- 6.1 Introduction to the Problem -- 6.2 A Case Study for Train Bearings -- 6.2.1 Axel Bearing Position Model (ML Model 1) -- 6.2.2 Train Bearing Position Model (ML Model 2) -- 6.2.3 Fleet Bearing Position Model (ML Model 3) -- 6.2.4 Testing and Validating the Models with Different Data -- 6.2.5 Conclusions of the Case Study -- References -- 7 The Curse of Dimensionality -- 7.1 Introduction to the Problem -- 7.2 Feature Selection Methods -- 7.3 The Use of Classifiers to Identify Failure Modes -- 7.4 Case Study: Cryogenic Reciprocating Compressors -- 7.4.1 Introduction to the Industrial Process -- 7.4.2 The Design of a CBM Strategy for the Compressors -- 7.4.3 The Selection of Features -- 7.4.4 The Results of the Analysis -- 7.4.5 Discussion of Results -- 7.5 Conclusions -- References -- 8 The Dynamic Measurement of Failure Risk -- 8.1 Introduction to the Problem -- 8.2 Dynamic Risk Level Assessment in Literature -- 8.3 Risk Management (RM), Assessment (RA) and Analysis (RAn) -- 8.4 Introduction to Dynamic Risk Assessment (DRA) -- 8.5 A Failure Mode Dra Method -- 8.6 Final Remarks -- References -- 9 The Dynamic Scheduling of Maintenance -- 9.1 Introduction -- 9.2 CBM Applied to Multi-component Systems -- 9.3 Fleet Maintenance Scheduling -- 9.4 Case Study. Scheduling Train Components' CBM -- 9.4.1 Introduction to the Problem -- 9.4.2 Building the Continuous Time Simulation Model -- 9.4.3 Implementation of a Practical Model in Vensim -- 9.4.4 Conclusions of the Case Study -- 9.5 Conclusions -- References -- Part V Emerging Data-Driven Processes for Asset Performance Management (APM) -- 10 Techniques for Anomalies Detection -- 10.1 Introduction 10.2 Anomalies Detection in Train Bearings -- 10.3 Baseline Analytics Selection -- 10.4 Anomalies Detection Model Implementation -- 10.5 Discussion of Results -- References -- 11 Asset Condition and Operations Efficiency -- 11.1 Introduction -- 11.2 Case Study. Efficiency in Renewable Energy Generation -- 11.2.1 Reviewing the Use of Predictive Techniques -- 11.2.2 Case Study Development -- 11.2.3 Case Study Conclusions -- 11.3 Case Study. LNG Storage Tank Pump Operation Analysis -- 11.3.1 Using Data Mining Together with Predictive Analytics -- 11.3.2 An Introduction to the DM AR Technique -- 11.3.3 The Emerging APM and Reliability Asessment Process -- 11.3.4 Presenting the Process Results -- 11.3.5 Case Study Conclusions -- References -- Part VI Emerging Data-Driven Processes for Asset Investment Planning (AIP) -- 12 Asset Health Indexing and Life Cycle Costing -- 12.1 Introduction -- 12.2 AHI Modelling Methodology -- 12.3 Life Cycle Costing Modelling Methodology -- 12.4 Case Study. Lng Regassification Plant -- 12.4.1 Asset Expense Profile Based on Its Health Index -- 12.4.2 Industrial Case Results and Findings -- References Plant maintenance-Data processing Plant maintenance-Management Erscheint auch als Druck-Ausgabe Crespo Márquez, Adolfo Digital Maintenance Management Cham : Springer International Publishing AG,c2022 978-3-030-97659-0 |
spellingShingle | Crespo Márquez, Adolfo Digital Maintenance Management Guiding Digital Transformation in Maintenance Intro -- Foreword -- Acknowledgements -- Overview -- Relevant Topics -- Structure of the Book -- Contents -- Part I Fundamental Concepts to Understand Digital Transformation Benefits -- 1 Benefits of Digital Transformation for Maintenance Management Systems. Market Trends -- 1.1 Introduction -- 1.2 Key Managerial Areas That Can Be Digitally Supported -- 1.3 Emerging Asset Management Systems APM & -- AIP -- 1.4 The New Am Systems/Platforms Architecture -- References -- 2 A Review of New Digital Technologies Impacting Maintenance Management -- 2.1 Introduction -- 2.2 The 'Internet of Things' (IOT) Technologies -- 2.3 Big Data -- 2.4 Predictive Analytics -- 2.5 Digital Twin Simulations -- 2.6 Augmented Reality -- 2.7 Business Intelligence and Data Visualization Tools -- 2.8 Complementary Technologies -- References -- Part II The Pillars for Digital Maintenance Management Excellence -- 3 Driving the Introduction of Digital Technologies to Enhance the Maintenance Management Process and Framework -- 3.1 Introduction -- 3.2 Starting from the Mm Process and Framework -- 3.3 New Opportunities with Data Availability and Analitycs -- 3.4 Visualizing the New Digital Maintenance Management Framework -- 3.5 The Need for a Business Asset Data Model -- References -- 4 The Definition of the Asset Data Model -- 4.1 Introduction -- 4.2 Methodology Proof of Concept: Data Model for a Criticality Analysis App -- References -- Part III Developments in Advanced Maintenance Management Apps -- 5 Advanced Asset Performance Management (APM) and Asset Investment Planning (AIP) Systems -- 5.1 The APM Toolbox Approach to Asset Maintenance -- 5.1.1 GE Digital's Predix Asset Performance Management -- 5.1.2 SAP APM Solution -- 5.1.3 Siemens APM Products -- 5.1.4 IBM APM Portfolio -- 5.2 The Asset Investment Planning (AIP) Solutions -- 5.2.1 Copperleaf Decision Analytics 5.2.2 The Cosmo Tech Hybrid Approach -- References -- Part IV Technical Challenges in the Use of Digital Technologies for Maintenance -- 6 The Non-ergodicity of Assets -- 6.1 Introduction to the Problem -- 6.2 A Case Study for Train Bearings -- 6.2.1 Axel Bearing Position Model (ML Model 1) -- 6.2.2 Train Bearing Position Model (ML Model 2) -- 6.2.3 Fleet Bearing Position Model (ML Model 3) -- 6.2.4 Testing and Validating the Models with Different Data -- 6.2.5 Conclusions of the Case Study -- References -- 7 The Curse of Dimensionality -- 7.1 Introduction to the Problem -- 7.2 Feature Selection Methods -- 7.3 The Use of Classifiers to Identify Failure Modes -- 7.4 Case Study: Cryogenic Reciprocating Compressors -- 7.4.1 Introduction to the Industrial Process -- 7.4.2 The Design of a CBM Strategy for the Compressors -- 7.4.3 The Selection of Features -- 7.4.4 The Results of the Analysis -- 7.4.5 Discussion of Results -- 7.5 Conclusions -- References -- 8 The Dynamic Measurement of Failure Risk -- 8.1 Introduction to the Problem -- 8.2 Dynamic Risk Level Assessment in Literature -- 8.3 Risk Management (RM), Assessment (RA) and Analysis (RAn) -- 8.4 Introduction to Dynamic Risk Assessment (DRA) -- 8.5 A Failure Mode Dra Method -- 8.6 Final Remarks -- References -- 9 The Dynamic Scheduling of Maintenance -- 9.1 Introduction -- 9.2 CBM Applied to Multi-component Systems -- 9.3 Fleet Maintenance Scheduling -- 9.4 Case Study. Scheduling Train Components' CBM -- 9.4.1 Introduction to the Problem -- 9.4.2 Building the Continuous Time Simulation Model -- 9.4.3 Implementation of a Practical Model in Vensim -- 9.4.4 Conclusions of the Case Study -- 9.5 Conclusions -- References -- Part V Emerging Data-Driven Processes for Asset Performance Management (APM) -- 10 Techniques for Anomalies Detection -- 10.1 Introduction 10.2 Anomalies Detection in Train Bearings -- 10.3 Baseline Analytics Selection -- 10.4 Anomalies Detection Model Implementation -- 10.5 Discussion of Results -- References -- 11 Asset Condition and Operations Efficiency -- 11.1 Introduction -- 11.2 Case Study. Efficiency in Renewable Energy Generation -- 11.2.1 Reviewing the Use of Predictive Techniques -- 11.2.2 Case Study Development -- 11.2.3 Case Study Conclusions -- 11.3 Case Study. LNG Storage Tank Pump Operation Analysis -- 11.3.1 Using Data Mining Together with Predictive Analytics -- 11.3.2 An Introduction to the DM AR Technique -- 11.3.3 The Emerging APM and Reliability Asessment Process -- 11.3.4 Presenting the Process Results -- 11.3.5 Case Study Conclusions -- References -- Part VI Emerging Data-Driven Processes for Asset Investment Planning (AIP) -- 12 Asset Health Indexing and Life Cycle Costing -- 12.1 Introduction -- 12.2 AHI Modelling Methodology -- 12.3 Life Cycle Costing Modelling Methodology -- 12.4 Case Study. Lng Regassification Plant -- 12.4.1 Asset Expense Profile Based on Its Health Index -- 12.4.2 Industrial Case Results and Findings -- References Plant maintenance-Data processing Plant maintenance-Management |
title | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_auth | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_exact_search | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_exact_search_txtP | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_full | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_fullStr | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_full_unstemmed | Digital Maintenance Management Guiding Digital Transformation in Maintenance |
title_short | Digital Maintenance Management |
title_sort | digital maintenance management guiding digital transformation in maintenance |
title_sub | Guiding Digital Transformation in Maintenance |
topic | Plant maintenance-Data processing Plant maintenance-Management |
topic_facet | Plant maintenance-Data processing Plant maintenance-Management |
work_keys_str_mv | AT crespomarquezadolfo digitalmaintenancemanagementguidingdigitaltransformationinmaintenance |