Recommender Systems in Fashion and Retail: Proceedings of the Third Workshop at the Recommender Systems Conference (2021)
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schriftenreihe: | Lecture Notes in Electrical Engineering Series
v.830 |
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (116 Seiten) |
ISBN: | 9783030940164 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048920987 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230502s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783030940164 |9 978-3-030-94016-4 | ||
035 | |a (ZDB-30-PQE)EBC6914950 | ||
035 | |a (ZDB-30-PAD)EBC6914950 | ||
035 | |a (ZDB-89-EBL)EBL6914950 | ||
035 | |a (OCoLC)1303085950 | ||
035 | |a (DE-599)BVBBV048920987 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.8720285633 | |
100 | 1 | |a Dokoohaki, Nima |e Verfasser |4 aut | |
245 | 1 | 0 | |a Recommender Systems in Fashion and Retail |b Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (116 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Electrical Engineering Series |v v.830 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Contents -- Graph Recommendations -- Using Relational Graph Convolutional Networks to Assign Fashion Communities to Users -- 1 Introduction -- 2 Proposed Method -- 2.1 Definitions -- 2.2 Method -- 2.3 Model Training -- 2.4 Neural Collaborative Filtering Baseline -- 3 Experiments -- 3.1 Datasets -- 3.2 Hyperparameters and Best Configurations -- 3.3 Results -- 4 Conclusions and Future Work -- References -- Generative Recommendations -- What Users Want? WARHOL: A Generative Model for Recommendation -- 1 Introduction -- 1.1 The Growing Impact of Machine Learning on Quantitative Marketing -- 1.2 Product Innovation as a Machine Learning Problem -- 2 Related Work -- 2.1 Generative Models for New Item Creation: -- 2.2 Generative Models for Image Synthesis -- 3 WARHOL: The Proposed Approach -- 3.1 The WARHOL Model -- 3.2 WARHOL Training -- 4 Experiments -- 4.1 Performance on the Reco Task -- 4.2 Conditional Product Generation -- 5 Conclusions -- 6 Out of Distribution on Fashion Gen -- References -- Sizing and Fit Recommendations -- Knowing When You Don't Know in Online Fashion: An Uncertainty-Aware Size Recommendation Framework -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Size Recommendation Task Formulation -- 3.2 Uncertainty-Based Decision-Making -- 3.3 Uncertainty-Aware Framework for Learning in the Presence of Noise -- 4 Experimental Setup -- 4.1 Dataset, Model, and Evaluation Metric -- 5 Results -- 5.1 Comparison of Uncertainty Metrics -- 5.2 Dataset Pruning and Re-weighting -- 6 Conclusion -- References -- SkillSF: In the Sizing Game, Your Size is Your Skill -- 1 Introduction -- 2 SkillSF -- 2.1 Skill Inference -- 2.2 Size Recommendation -- 2.3 Hyper-parameters -- 3 Experimental Set-Up -- 4 Results -- 4.1 Hyper-Parameters Tuning -- 4.2 Size Recommendation -- 4.3 Size Initialization -- 4.4 Insights into Article Sizes | |
505 | 8 | |a 4.5 Return Data -- 5 Discussion and Future Work -- References -- Style-Based Interactive Eyewear Recommendations -- 1 Introduction -- 2 Expert-Based Recommendation and High-Level Expression Attributes -- 3 Implementation Details -- 3.1 Customer and Glasses Feature Extraction -- 3.2 Harmonic and Style Attribute Ranking -- 4 Discussion -- 5 Conclusion -- References -- Fashion Understanding -- A Critical Analysis of Offline Evaluation Decisions Against Online Results: A Real-Time Recommendations Case Study -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 How to Do Offline Evaluation -- 3.2 Dataset -- 3.3 Experimentation -- 4 Results -- 4.1 Live Experiment -- 4.2 Offline Results -- 5 Conclusion -- 6 Future Work -- References -- Attentive Hierarchical Label Sharing for Enhanced Garment and Attribute Classification of Fashion Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Proposed Architectures -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Evaluation -- 5 Results -- 5.1 Object Type Detection -- 5.2 Category and Attribute Classification -- 6 Conclusions -- References | |
650 | 4 | |a Recommender systems (Information filtering) | |
700 | 1 | |a Jaradat, Shatha |e Sonstige |4 oth | |
700 | 1 | |a Corona Pampín, Humberto Jesús |e Sonstige |4 oth | |
700 | 1 | |a Shirvany, Reza |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Dokoohaki, Nima |t Recommender Systems in Fashion and Retail |d Cham : Springer International Publishing AG,c2022 |z 9783030940157 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034185078 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6914950 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804185102875361280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dokoohaki, Nima |
author_facet | Dokoohaki, Nima |
author_role | aut |
author_sort | Dokoohaki, Nima |
author_variant | n d nd |
building | Verbundindex |
bvnumber | BV048920987 |
collection | ZDB-30-PQE |
contents | Intro -- Contents -- Graph Recommendations -- Using Relational Graph Convolutional Networks to Assign Fashion Communities to Users -- 1 Introduction -- 2 Proposed Method -- 2.1 Definitions -- 2.2 Method -- 2.3 Model Training -- 2.4 Neural Collaborative Filtering Baseline -- 3 Experiments -- 3.1 Datasets -- 3.2 Hyperparameters and Best Configurations -- 3.3 Results -- 4 Conclusions and Future Work -- References -- Generative Recommendations -- What Users Want? WARHOL: A Generative Model for Recommendation -- 1 Introduction -- 1.1 The Growing Impact of Machine Learning on Quantitative Marketing -- 1.2 Product Innovation as a Machine Learning Problem -- 2 Related Work -- 2.1 Generative Models for New Item Creation: -- 2.2 Generative Models for Image Synthesis -- 3 WARHOL: The Proposed Approach -- 3.1 The WARHOL Model -- 3.2 WARHOL Training -- 4 Experiments -- 4.1 Performance on the Reco Task -- 4.2 Conditional Product Generation -- 5 Conclusions -- 6 Out of Distribution on Fashion Gen -- References -- Sizing and Fit Recommendations -- Knowing When You Don't Know in Online Fashion: An Uncertainty-Aware Size Recommendation Framework -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Size Recommendation Task Formulation -- 3.2 Uncertainty-Based Decision-Making -- 3.3 Uncertainty-Aware Framework for Learning in the Presence of Noise -- 4 Experimental Setup -- 4.1 Dataset, Model, and Evaluation Metric -- 5 Results -- 5.1 Comparison of Uncertainty Metrics -- 5.2 Dataset Pruning and Re-weighting -- 6 Conclusion -- References -- SkillSF: In the Sizing Game, Your Size is Your Skill -- 1 Introduction -- 2 SkillSF -- 2.1 Skill Inference -- 2.2 Size Recommendation -- 2.3 Hyper-parameters -- 3 Experimental Set-Up -- 4 Results -- 4.1 Hyper-Parameters Tuning -- 4.2 Size Recommendation -- 4.3 Size Initialization -- 4.4 Insights into Article Sizes 4.5 Return Data -- 5 Discussion and Future Work -- References -- Style-Based Interactive Eyewear Recommendations -- 1 Introduction -- 2 Expert-Based Recommendation and High-Level Expression Attributes -- 3 Implementation Details -- 3.1 Customer and Glasses Feature Extraction -- 3.2 Harmonic and Style Attribute Ranking -- 4 Discussion -- 5 Conclusion -- References -- Fashion Understanding -- A Critical Analysis of Offline Evaluation Decisions Against Online Results: A Real-Time Recommendations Case Study -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 How to Do Offline Evaluation -- 3.2 Dataset -- 3.3 Experimentation -- 4 Results -- 4.1 Live Experiment -- 4.2 Offline Results -- 5 Conclusion -- 6 Future Work -- References -- Attentive Hierarchical Label Sharing for Enhanced Garment and Attribute Classification of Fashion Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Proposed Architectures -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Evaluation -- 5 Results -- 5.1 Object Type Detection -- 5.2 Category and Attribute Classification -- 6 Conclusions -- References |
ctrlnum | (ZDB-30-PQE)EBC6914950 (ZDB-30-PAD)EBC6914950 (ZDB-89-EBL)EBL6914950 (OCoLC)1303085950 (DE-599)BVBBV048920987 |
dewey-full | 658.8720285633 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.8720285633 |
dewey-search | 658.8720285633 |
dewey-sort | 3658.8720285633 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04741nmm a2200445zcb4500</leader><controlfield tag="001">BV048920987</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230502s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030940164</subfield><subfield code="9">978-3-030-94016-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6914950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6914950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6914950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1303085950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048920987</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.8720285633</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dokoohaki, Nima</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recommender Systems in Fashion and Retail</subfield><subfield code="b">Proceedings of the Third Workshop at the Recommender Systems Conference (2021)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (116 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Electrical Engineering Series</subfield><subfield code="v">v.830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Contents -- Graph Recommendations -- Using Relational Graph Convolutional Networks to Assign Fashion Communities to Users -- 1 Introduction -- 2 Proposed Method -- 2.1 Definitions -- 2.2 Method -- 2.3 Model Training -- 2.4 Neural Collaborative Filtering Baseline -- 3 Experiments -- 3.1 Datasets -- 3.2 Hyperparameters and Best Configurations -- 3.3 Results -- 4 Conclusions and Future Work -- References -- Generative Recommendations -- What Users Want? WARHOL: A Generative Model for Recommendation -- 1 Introduction -- 1.1 The Growing Impact of Machine Learning on Quantitative Marketing -- 1.2 Product Innovation as a Machine Learning Problem -- 2 Related Work -- 2.1 Generative Models for New Item Creation: -- 2.2 Generative Models for Image Synthesis -- 3 WARHOL: The Proposed Approach -- 3.1 The WARHOL Model -- 3.2 WARHOL Training -- 4 Experiments -- 4.1 Performance on the Reco Task -- 4.2 Conditional Product Generation -- 5 Conclusions -- 6 Out of Distribution on Fashion Gen -- References -- Sizing and Fit Recommendations -- Knowing When You Don't Know in Online Fashion: An Uncertainty-Aware Size Recommendation Framework -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Size Recommendation Task Formulation -- 3.2 Uncertainty-Based Decision-Making -- 3.3 Uncertainty-Aware Framework for Learning in the Presence of Noise -- 4 Experimental Setup -- 4.1 Dataset, Model, and Evaluation Metric -- 5 Results -- 5.1 Comparison of Uncertainty Metrics -- 5.2 Dataset Pruning and Re-weighting -- 6 Conclusion -- References -- SkillSF: In the Sizing Game, Your Size is Your Skill -- 1 Introduction -- 2 SkillSF -- 2.1 Skill Inference -- 2.2 Size Recommendation -- 2.3 Hyper-parameters -- 3 Experimental Set-Up -- 4 Results -- 4.1 Hyper-Parameters Tuning -- 4.2 Size Recommendation -- 4.3 Size Initialization -- 4.4 Insights into Article Sizes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 Return Data -- 5 Discussion and Future Work -- References -- Style-Based Interactive Eyewear Recommendations -- 1 Introduction -- 2 Expert-Based Recommendation and High-Level Expression Attributes -- 3 Implementation Details -- 3.1 Customer and Glasses Feature Extraction -- 3.2 Harmonic and Style Attribute Ranking -- 4 Discussion -- 5 Conclusion -- References -- Fashion Understanding -- A Critical Analysis of Offline Evaluation Decisions Against Online Results: A Real-Time Recommendations Case Study -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 How to Do Offline Evaluation -- 3.2 Dataset -- 3.3 Experimentation -- 4 Results -- 4.1 Live Experiment -- 4.2 Offline Results -- 5 Conclusion -- 6 Future Work -- References -- Attentive Hierarchical Label Sharing for Enhanced Garment and Attribute Classification of Fashion Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Proposed Architectures -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Evaluation -- 5 Results -- 5.1 Object Type Detection -- 5.2 Category and Attribute Classification -- 6 Conclusions -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommender systems (Information filtering)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaradat, Shatha</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corona Pampín, Humberto Jesús</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirvany, Reza</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Dokoohaki, Nima</subfield><subfield code="t">Recommender Systems in Fashion and Retail</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030940157</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034185078</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6914950</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048920987 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:16Z |
indexdate | 2024-07-10T09:49:54Z |
institution | BVB |
isbn | 9783030940164 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034185078 |
oclc_num | 1303085950 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (116 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | Lecture Notes in Electrical Engineering Series |
spelling | Dokoohaki, Nima Verfasser aut Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (116 Seiten) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Electrical Engineering Series v.830 Description based on publisher supplied metadata and other sources Intro -- Contents -- Graph Recommendations -- Using Relational Graph Convolutional Networks to Assign Fashion Communities to Users -- 1 Introduction -- 2 Proposed Method -- 2.1 Definitions -- 2.2 Method -- 2.3 Model Training -- 2.4 Neural Collaborative Filtering Baseline -- 3 Experiments -- 3.1 Datasets -- 3.2 Hyperparameters and Best Configurations -- 3.3 Results -- 4 Conclusions and Future Work -- References -- Generative Recommendations -- What Users Want? WARHOL: A Generative Model for Recommendation -- 1 Introduction -- 1.1 The Growing Impact of Machine Learning on Quantitative Marketing -- 1.2 Product Innovation as a Machine Learning Problem -- 2 Related Work -- 2.1 Generative Models for New Item Creation: -- 2.2 Generative Models for Image Synthesis -- 3 WARHOL: The Proposed Approach -- 3.1 The WARHOL Model -- 3.2 WARHOL Training -- 4 Experiments -- 4.1 Performance on the Reco Task -- 4.2 Conditional Product Generation -- 5 Conclusions -- 6 Out of Distribution on Fashion Gen -- References -- Sizing and Fit Recommendations -- Knowing When You Don't Know in Online Fashion: An Uncertainty-Aware Size Recommendation Framework -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Size Recommendation Task Formulation -- 3.2 Uncertainty-Based Decision-Making -- 3.3 Uncertainty-Aware Framework for Learning in the Presence of Noise -- 4 Experimental Setup -- 4.1 Dataset, Model, and Evaluation Metric -- 5 Results -- 5.1 Comparison of Uncertainty Metrics -- 5.2 Dataset Pruning and Re-weighting -- 6 Conclusion -- References -- SkillSF: In the Sizing Game, Your Size is Your Skill -- 1 Introduction -- 2 SkillSF -- 2.1 Skill Inference -- 2.2 Size Recommendation -- 2.3 Hyper-parameters -- 3 Experimental Set-Up -- 4 Results -- 4.1 Hyper-Parameters Tuning -- 4.2 Size Recommendation -- 4.3 Size Initialization -- 4.4 Insights into Article Sizes 4.5 Return Data -- 5 Discussion and Future Work -- References -- Style-Based Interactive Eyewear Recommendations -- 1 Introduction -- 2 Expert-Based Recommendation and High-Level Expression Attributes -- 3 Implementation Details -- 3.1 Customer and Glasses Feature Extraction -- 3.2 Harmonic and Style Attribute Ranking -- 4 Discussion -- 5 Conclusion -- References -- Fashion Understanding -- A Critical Analysis of Offline Evaluation Decisions Against Online Results: A Real-Time Recommendations Case Study -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 How to Do Offline Evaluation -- 3.2 Dataset -- 3.3 Experimentation -- 4 Results -- 4.1 Live Experiment -- 4.2 Offline Results -- 5 Conclusion -- 6 Future Work -- References -- Attentive Hierarchical Label Sharing for Enhanced Garment and Attribute Classification of Fashion Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Proposed Architectures -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Evaluation -- 5 Results -- 5.1 Object Type Detection -- 5.2 Category and Attribute Classification -- 6 Conclusions -- References Recommender systems (Information filtering) Jaradat, Shatha Sonstige oth Corona Pampín, Humberto Jesús Sonstige oth Shirvany, Reza Sonstige oth Erscheint auch als Druck-Ausgabe Dokoohaki, Nima Recommender Systems in Fashion and Retail Cham : Springer International Publishing AG,c2022 9783030940157 |
spellingShingle | Dokoohaki, Nima Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) Intro -- Contents -- Graph Recommendations -- Using Relational Graph Convolutional Networks to Assign Fashion Communities to Users -- 1 Introduction -- 2 Proposed Method -- 2.1 Definitions -- 2.2 Method -- 2.3 Model Training -- 2.4 Neural Collaborative Filtering Baseline -- 3 Experiments -- 3.1 Datasets -- 3.2 Hyperparameters and Best Configurations -- 3.3 Results -- 4 Conclusions and Future Work -- References -- Generative Recommendations -- What Users Want? WARHOL: A Generative Model for Recommendation -- 1 Introduction -- 1.1 The Growing Impact of Machine Learning on Quantitative Marketing -- 1.2 Product Innovation as a Machine Learning Problem -- 2 Related Work -- 2.1 Generative Models for New Item Creation: -- 2.2 Generative Models for Image Synthesis -- 3 WARHOL: The Proposed Approach -- 3.1 The WARHOL Model -- 3.2 WARHOL Training -- 4 Experiments -- 4.1 Performance on the Reco Task -- 4.2 Conditional Product Generation -- 5 Conclusions -- 6 Out of Distribution on Fashion Gen -- References -- Sizing and Fit Recommendations -- Knowing When You Don't Know in Online Fashion: An Uncertainty-Aware Size Recommendation Framework -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Size Recommendation Task Formulation -- 3.2 Uncertainty-Based Decision-Making -- 3.3 Uncertainty-Aware Framework for Learning in the Presence of Noise -- 4 Experimental Setup -- 4.1 Dataset, Model, and Evaluation Metric -- 5 Results -- 5.1 Comparison of Uncertainty Metrics -- 5.2 Dataset Pruning and Re-weighting -- 6 Conclusion -- References -- SkillSF: In the Sizing Game, Your Size is Your Skill -- 1 Introduction -- 2 SkillSF -- 2.1 Skill Inference -- 2.2 Size Recommendation -- 2.3 Hyper-parameters -- 3 Experimental Set-Up -- 4 Results -- 4.1 Hyper-Parameters Tuning -- 4.2 Size Recommendation -- 4.3 Size Initialization -- 4.4 Insights into Article Sizes 4.5 Return Data -- 5 Discussion and Future Work -- References -- Style-Based Interactive Eyewear Recommendations -- 1 Introduction -- 2 Expert-Based Recommendation and High-Level Expression Attributes -- 3 Implementation Details -- 3.1 Customer and Glasses Feature Extraction -- 3.2 Harmonic and Style Attribute Ranking -- 4 Discussion -- 5 Conclusion -- References -- Fashion Understanding -- A Critical Analysis of Offline Evaluation Decisions Against Online Results: A Real-Time Recommendations Case Study -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 How to Do Offline Evaluation -- 3.2 Dataset -- 3.3 Experimentation -- 4 Results -- 4.1 Live Experiment -- 4.2 Offline Results -- 5 Conclusion -- 6 Future Work -- References -- Attentive Hierarchical Label Sharing for Enhanced Garment and Attribute Classification of Fashion Imagery -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Proposed Architectures -- 4 Experimental Setup -- 4.1 Datasets -- 4.2 Evaluation -- 5 Results -- 5.1 Object Type Detection -- 5.2 Category and Attribute Classification -- 6 Conclusions -- References Recommender systems (Information filtering) |
title | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_auth | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_exact_search | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_exact_search_txtP | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_full | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_fullStr | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_full_unstemmed | Recommender Systems in Fashion and Retail Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
title_short | Recommender Systems in Fashion and Retail |
title_sort | recommender systems in fashion and retail proceedings of the third workshop at the recommender systems conference 2021 |
title_sub | Proceedings of the Third Workshop at the Recommender Systems Conference (2021) |
topic | Recommender systems (Information filtering) |
topic_facet | Recommender systems (Information filtering) |
work_keys_str_mv | AT dokoohakinima recommendersystemsinfashionandretailproceedingsofthethirdworkshopattherecommendersystemsconference2021 AT jaradatshatha recommendersystemsinfashionandretailproceedingsofthethirdworkshopattherecommendersystemsconference2021 AT coronapampinhumbertojesus recommendersystemsinfashionandretailproceedingsofthethirdworkshopattherecommendersystemsconference2021 AT shirvanyreza recommendersystemsinfashionandretailproceedingsofthethirdworkshopattherecommendersystemsconference2021 |