Python for geospatial data analysis: theory, tools, and practice for location intelligence
"In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualiz...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing
O'Reilly
October 2022
|
Ausgabe: | First edition |
Schlagworte: | |
Online-Zugang: | DE-1050 |
Zusammenfassung: | "In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity."-- |
Beschreibung: | 1 Online-Ressource (xv, 262 Seiten) |
ISBN: | 9781098104764 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048917734 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230428s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781098104764 |9 978-1-098-10476-4 | ||
035 | |a (OCoLC)1374563708 | ||
035 | |a (DE-599)BVBBV048917734 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a RB 10104 |0 (DE-625)142220:12617 |2 rvk | ||
100 | 1 | |a McClain, Bonny P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python for geospatial data analysis |b theory, tools, and practice for location intelligence |c Bonny P. McClain |
250 | |a First edition | ||
264 | 1 | |a Beijing |b O'Reilly |c October 2022 | |
300 | |a 1 Online-Ressource (xv, 262 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data | |
520 | |a "In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity."-- | ||
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a Geospatial data / Technological innovations | |
650 | 7 | |a Python (Computer program language) |2 fast | |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumdaten |0 (DE-588)4206012-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Raumdaten |0 (DE-588)4206012-6 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-098-10479-5 |
912 | |a ZDB-30-PQE | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30190351 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1805069255412023296 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | McClain, Bonny P. |
author_facet | McClain, Bonny P. |
author_role | aut |
author_sort | McClain, Bonny P. |
author_variant | b p m bp bpm |
building | Verbundindex |
bvnumber | BV048917734 |
classification_rvk | ST 250 RB 10104 |
collection | ZDB-30-PQE |
contents | Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data |
ctrlnum | (OCoLC)1374563708 (DE-599)BVBBV048917734 |
discipline | Informatik Geographie |
discipline_str_mv | Informatik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV048917734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230428s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098104764</subfield><subfield code="9">978-1-098-10476-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374563708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048917734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10104</subfield><subfield code="0">(DE-625)142220:12617</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McClain, Bonny P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python for geospatial data analysis</subfield><subfield code="b">theory, tools, and practice for location intelligence</subfield><subfield code="c">Bonny P. McClain</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">October 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 262 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geospatial data / Technological innovations</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-10479-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30190351</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048917734 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:55:04Z |
indexdate | 2024-07-20T04:03:08Z |
institution | BVB |
isbn | 9781098104764 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034181837 |
oclc_num | 1374563708 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xv, 262 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly |
record_format | marc |
spelling | McClain, Bonny P. Verfasser aut Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain First edition Beijing O'Reilly October 2022 1 Online-Ressource (xv, 262 Seiten) txt rdacontent c rdamedia cr rdacarrier Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data "In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity."-- Python (Computer program language) Geospatial data / Technological innovations Python (Computer program language) fast Visualisierung (DE-588)4188417-6 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Raumdaten (DE-588)4206012-6 gnd rswk-swf Raumdaten (DE-588)4206012-6 s Datenanalyse (DE-588)4123037-1 s Visualisierung (DE-588)4188417-6 s Python Programmiersprache (DE-588)4434275-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-098-10479-5 |
spellingShingle | McClain, Bonny P. Python for geospatial data analysis theory, tools, and practice for location intelligence Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data Python (Computer program language) Geospatial data / Technological innovations Python (Computer program language) fast Visualisierung (DE-588)4188417-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd Raumdaten (DE-588)4206012-6 gnd |
subject_GND | (DE-588)4188417-6 (DE-588)4434275-5 (DE-588)4123037-1 (DE-588)4206012-6 |
title | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_auth | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_exact_search | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_exact_search_txtP | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_full | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_fullStr | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_full_unstemmed | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_short | Python for geospatial data analysis |
title_sort | python for geospatial data analysis theory tools and practice for location intelligence |
title_sub | theory, tools, and practice for location intelligence |
topic | Python (Computer program language) Geospatial data / Technological innovations Python (Computer program language) fast Visualisierung (DE-588)4188417-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd Raumdaten (DE-588)4206012-6 gnd |
topic_facet | Python (Computer program language) Geospatial data / Technological innovations Visualisierung Python Programmiersprache Datenanalyse Raumdaten |
work_keys_str_mv | AT mcclainbonnyp pythonforgeospatialdataanalysistheorytoolsandpracticeforlocationintelligence |