Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
2023
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | xii, 142 Seiten Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-17717 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048916351 | ||
003 | DE-604 | ||
005 | 20230612 | ||
007 | t | ||
008 | 230427s2023 a||| m||| 00||| eng d | ||
035 | |a (OCoLC)1381302031 | ||
035 | |a (DE-599)BVBBV048916351 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 680 |0 (DE-625)143690: |2 rvk | ||
100 | 1 | |a Lassner, David |e Verfasser |0 (DE-588)1246941414 |4 aut | |
245 | 1 | 0 | |a Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |c vorgelegt von M. Sc. David Lassner |
264 | 1 | |a Berlin |c 2023 | |
300 | |a xii, 142 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2023 | ||
650 | 0 | 7 | |a Computational social science |0 (DE-588)1249405939 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digital Humanities |0 (DE-588)1038714850 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lesart |0 (DE-588)4167429-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Digital Humanities |0 (DE-588)1038714850 |D s |
689 | 0 | 1 | |a Lesart |0 (DE-588)4167429-7 |D s |
689 | 0 | 2 | |a Computational social science |0 (DE-588)1249405939 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.14279/depositonce-17717 |w (DE-604)BV048916359 |
856 | 4 | 1 | |u https://doi.org/10.14279/depositonce-17717 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034180468 |
Datensatz im Suchindex
_version_ | 1804185092737728512 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lassner, David |
author_GND | (DE-588)1246941414 |
author_facet | Lassner, David |
author_role | aut |
author_sort | Lassner, David |
author_variant | d l dl |
building | Verbundindex |
bvnumber | BV048916351 |
classification_rvk | ST 680 |
collection | ebook |
ctrlnum | (OCoLC)1381302031 (DE-599)BVBBV048916351 |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.14279/depositonce-17717 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01580nam a2200397 c 4500</leader><controlfield tag="001">BV048916351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230612 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230427s2023 a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1381302031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048916351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 680</subfield><subfield code="0">(DE-625)143690:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lassner, David</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1246941414</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities</subfield><subfield code="c">vorgelegt von M. Sc. David Lassner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 142 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2023</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computational social science</subfield><subfield code="0">(DE-588)1249405939</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digital Humanities</subfield><subfield code="0">(DE-588)1038714850</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lesart</subfield><subfield code="0">(DE-588)4167429-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Digital Humanities</subfield><subfield code="0">(DE-588)1038714850</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lesart</subfield><subfield code="0">(DE-588)4167429-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computational social science</subfield><subfield code="0">(DE-588)1249405939</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.14279/depositonce-17717</subfield><subfield code="w">(DE-604)BV048916359</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.14279/depositonce-17717</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034180468</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048916351 |
illustrated | Illustrated |
index_date | 2024-07-03T21:54:45Z |
indexdate | 2024-07-10T09:49:44Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034180468 |
oclc_num | 1381302031 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | xii, 142 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | Lassner, David Verfasser (DE-588)1246941414 aut Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities vorgelegt von M. Sc. David Lassner Berlin 2023 xii, 142 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Berlin 2023 Computational social science (DE-588)1249405939 gnd rswk-swf Digital Humanities (DE-588)1038714850 gnd rswk-swf Lesart (DE-588)4167429-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Digital Humanities (DE-588)1038714850 s Lesart (DE-588)4167429-7 s Computational social science (DE-588)1249405939 s DE-604 Erscheint auch als Online-Ausgabe 10.14279/depositonce-17717 (DE-604)BV048916359 https://doi.org/10.14279/depositonce-17717 Resolving-System kostenfrei Volltext |
spellingShingle | Lassner, David Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities Computational social science (DE-588)1249405939 gnd Digital Humanities (DE-588)1038714850 gnd Lesart (DE-588)4167429-7 gnd |
subject_GND | (DE-588)1249405939 (DE-588)1038714850 (DE-588)4167429-7 (DE-588)4113937-9 |
title | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |
title_auth | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |
title_exact_search | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |
title_exact_search_txtP | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |
title_full | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities vorgelegt von M. Sc. David Lassner |
title_fullStr | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities vorgelegt von M. Sc. David Lassner |
title_full_unstemmed | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities vorgelegt von M. Sc. David Lassner |
title_short | Analysis of textual variants with robust machine learning methods: Towards novel insights for the digital humanities |
title_sort | analysis of textual variants with robust machine learning methods towards novel insights for the digital humanities |
topic | Computational social science (DE-588)1249405939 gnd Digital Humanities (DE-588)1038714850 gnd Lesart (DE-588)4167429-7 gnd |
topic_facet | Computational social science Digital Humanities Lesart Hochschulschrift |
url | https://doi.org/10.14279/depositonce-17717 |
work_keys_str_mv | AT lassnerdavid analysisoftextualvariantswithrobustmachinelearningmethodstowardsnovelinsightsforthedigitalhumanities |