Introduction to environmental data science:
Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2023
|
Schlagworte: | |
Online-Zugang: | DE-824 URL des Erstveröffentlichers |
Zusammenfassung: | Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End‑of‑chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data. |
Beschreibung: | 1 Online-Ressource (xx, 627 Seiten) Illustrationen, Diagramme |
ISBN: | 9781107588493 |
DOI: | 10.1017/9781107588493 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV048913459 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230426s2023 xx a||| o|||| 00||| eng d | ||
020 | |a 9781107588493 |c Online |9 978-1-107-58849-3 | ||
024 | 7 | |a 10.1017/9781107588493 |2 doi | |
035 | |a (OCoLC)1378501231 | ||
035 | |a (DE-599)KEP091393752 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-824 | ||
082 | 0 | |a 363.700285 |2 23 | |
084 | |a WC 7700 |0 (DE-625)148144: |2 rvk | ||
084 | |a WI 1500 |0 (DE-625)148757: |2 rvk | ||
084 | |a ST 630 |0 (DE-625)143685: |2 rvk | ||
084 | |a WC 7786 |0 (DE-625)164864: |2 rvk | ||
100 | 1 | |a Hsieh, William Wei |d 1955- |e Verfasser |0 (DE-588)139904557 |4 aut | |
245 | 1 | 0 | |a Introduction to environmental data science |c William W. Hsieh |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xx, 627 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End‑of‑chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data. | |
650 | 0 | 7 | |a Klimaänderung |0 (DE-588)4164199-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umweltwissenschaften |0 (DE-588)4137364-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Environmental sciences / Data processing | |
653 | 0 | |a Environmental protection / Data processing | |
653 | 0 | |a Environmental management / Data processing | |
653 | 0 | |a Machine learning | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 3 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 4 | |a Umweltwissenschaften |0 (DE-588)4137364-9 |D s |
689 | 0 | 5 | |a Klimaänderung |0 (DE-588)4164199-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a Umweltwissenschaften |0 (DE-588)4137364-9 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-107-06555-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781107588493 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CCSC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034177626 | |
966 | e | |u https://doi.org/10.1017/9781107588493 |l DE-824 |p ZDB-20-CCSC |q ZDB-20-CCSC23 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1823932151950737408 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hsieh, William Wei 1955- |
author_GND | (DE-588)139904557 |
author_facet | Hsieh, William Wei 1955- |
author_role | aut |
author_sort | Hsieh, William Wei 1955- |
author_variant | w w h ww wwh |
building | Verbundindex |
bvnumber | BV048913459 |
classification_rvk | WC 7700 WI 1500 ST 630 WC 7786 |
collection | ZDB-20-CBO ZDB-20-CTM ZDB-20-CCSC |
ctrlnum | (OCoLC)1378501231 (DE-599)KEP091393752 |
dewey-full | 363.700285 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 363 - Other social problems and services |
dewey-raw | 363.700285 |
dewey-search | 363.700285 |
dewey-sort | 3363.700285 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Biologie Informatik Soziologie |
discipline_str_mv | Biologie Informatik Soziologie |
doi_str_mv | 10.1017/9781107588493 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV048913459</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230426s2023 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107588493</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-58849-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781107588493</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1378501231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP091393752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">363.700285</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7700</subfield><subfield code="0">(DE-625)148144:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 1500</subfield><subfield code="0">(DE-625)148757:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7786</subfield><subfield code="0">(DE-625)164864:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hsieh, William Wei</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139904557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to environmental data science</subfield><subfield code="c">William W. Hsieh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 627 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End‑of‑chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klimaänderung</subfield><subfield code="0">(DE-588)4164199-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umweltwissenschaften</subfield><subfield code="0">(DE-588)4137364-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental protection / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental management / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Umweltwissenschaften</subfield><subfield code="0">(DE-588)4137364-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Klimaänderung</subfield><subfield code="0">(DE-588)4164199-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Umweltwissenschaften</subfield><subfield code="0">(DE-588)4137364-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-107-06555-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781107588493</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CCSC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034177626</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781107588493</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-20-CCSC</subfield><subfield code="q">ZDB-20-CCSC23</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048913459 |
illustrated | Illustrated |
index_date | 2024-07-03T21:53:59Z |
indexdate | 2025-02-13T09:00:48Z |
institution | BVB |
isbn | 9781107588493 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034177626 |
oclc_num | 1378501231 |
open_access_boolean | |
owner | DE-824 |
owner_facet | DE-824 |
physical | 1 Online-Ressource (xx, 627 Seiten) Illustrationen, Diagramme |
psigel | ZDB-20-CBO ZDB-20-CTM ZDB-20-CCSC ZDB-20-CCSC ZDB-20-CCSC23 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Hsieh, William Wei 1955- Verfasser (DE-588)139904557 aut Introduction to environmental data science William W. Hsieh Cambridge, United Kingdom Cambridge University Press 2023 1 Online-Ressource (xx, 627 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End‑of‑chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data. Klimaänderung (DE-588)4164199-1 gnd rswk-swf Deep Learning (DE-588)1135597375 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Data Science (DE-588)1140936166 gnd rswk-swf Umweltwissenschaften (DE-588)4137364-9 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Environmental sciences / Data processing Environmental protection / Data processing Environmental management / Data processing Machine learning Maschinelles Lernen (DE-588)4193754-5 s Deep Learning (DE-588)1135597375 s Statistik (DE-588)4056995-0 s Datenanalyse (DE-588)4123037-1 s Umweltwissenschaften (DE-588)4137364-9 s Klimaänderung (DE-588)4164199-1 s DE-604 Data Science (DE-588)1140936166 s Erscheint auch als Druck-Ausgabe, Hardcover 978-1-107-06555-0 https://doi.org/10.1017/9781107588493 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Hsieh, William Wei 1955- Introduction to environmental data science Klimaänderung (DE-588)4164199-1 gnd Deep Learning (DE-588)1135597375 gnd Datenanalyse (DE-588)4123037-1 gnd Data Science (DE-588)1140936166 gnd Umweltwissenschaften (DE-588)4137364-9 gnd Statistik (DE-588)4056995-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4164199-1 (DE-588)1135597375 (DE-588)4123037-1 (DE-588)1140936166 (DE-588)4137364-9 (DE-588)4056995-0 (DE-588)4193754-5 |
title | Introduction to environmental data science |
title_auth | Introduction to environmental data science |
title_exact_search | Introduction to environmental data science |
title_exact_search_txtP | Introduction to environmental data science |
title_full | Introduction to environmental data science William W. Hsieh |
title_fullStr | Introduction to environmental data science William W. Hsieh |
title_full_unstemmed | Introduction to environmental data science William W. Hsieh |
title_short | Introduction to environmental data science |
title_sort | introduction to environmental data science |
topic | Klimaänderung (DE-588)4164199-1 gnd Deep Learning (DE-588)1135597375 gnd Datenanalyse (DE-588)4123037-1 gnd Data Science (DE-588)1140936166 gnd Umweltwissenschaften (DE-588)4137364-9 gnd Statistik (DE-588)4056995-0 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Klimaänderung Deep Learning Datenanalyse Data Science Umweltwissenschaften Statistik Maschinelles Lernen |
url | https://doi.org/10.1017/9781107588493 |
work_keys_str_mv | AT hsiehwilliamwei introductiontoenvironmentaldatascience |