Foundations of computational imaging: a model-based approach

Probability, estimation, and random processes -- Causal Gaussian models -- Non-causal Gaussian models -- Map estimation with Gaussian priors -- Non-Gaussian MRF models -- Map estimation with non-Gaussian priors -- Surrogate functions and majorization -- Constrained optimization and proximal methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bouman, Charles Addison (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Philadelphia SIAM, Society for Industrial and Applied Mathematics [2022]
Schriftenreihe:Other Titles in Applied Mathematics [180]
Schlagworte:
Zusammenfassung:Probability, estimation, and random processes -- Causal Gaussian models -- Non-causal Gaussian models -- Map estimation with Gaussian priors -- Non-Gaussian MRF models -- Map estimation with non-Gaussian priors -- Surrogate functions and majorization -- Constrained optimization and proximal methods -- Plug-and-play and advanced priors -- Model parameter estimation -- The expectation-maximization (EM) algorithm -- Markov chains and hidden Markov models -- General MRF models -- Stochastic simulation -- Bayesian segmentation -- Poisson data models.
This book provides a foundation for a collection of theoretical material that can serve as a common language for both researchers and practitioners of Computational Imaging.
Beschreibung:Includes bibliographical references and index
Beschreibung:xi, 337 Seiten Illustrationen, Diagramme
ISBN:9781611977134

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!