Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines: Theory, Algorithms and Applications
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer Nature Singapore
2023
Singapore Springer |
Ausgabe: | 1st ed. 2023 |
Schriftenreihe: | Industrial and Applied Mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XIV, 305 p. 83 illus., 58 illus. in color) |
ISBN: | 9789811965531 |
ISSN: | 2364-6845 |
DOI: | 10.1007/978-981-19-6553-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048885904 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230403s2023 |||| o||u| ||||||eng d | ||
020 | |a 9789811965531 |c Online |9 978-981-1965-53-1 | ||
024 | 7 | |a 10.1007/978-981-19-6553-1 |2 doi | |
035 | |a (ZDB-2-SMA)9789811965531 | ||
035 | |a (OCoLC)1376405297 | ||
035 | |a (DE-599)BVBBV048885904 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 512.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines |b Theory, Algorithms and Applications |c edited by Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty |
250 | |a 1st ed. 2023 | ||
264 | 1 | |a Singapore |b Springer Nature Singapore |c 2023 | |
264 | 1 | |a Singapore |b Springer | |
300 | |a 1 Online-Ressource (XIV, 305 p. 83 illus., 58 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Industrial and Applied Mathematics |x 2364-6845 | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Optimization | |
650 | 4 | |a Data Analysis and Big Data | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Automated Pattern Recognition | |
650 | 4 | |a Python | |
650 | 4 | |a Algebraic fields | |
650 | 4 | |a Polynomials | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Quantitative research | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Pattern recognition systems | |
650 | 4 | |a Python (Computer program language) | |
700 | 1 | |a Rad, Jamal Amani |4 edt | |
700 | 1 | |a Parand, Kourosh |4 edt | |
700 | 1 | |a Chakraverty, Snehashish |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-1965-52-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-1965-54-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-1965-55-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-981-19-6553-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034150548 | ||
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FHD01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UBY01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-19-6553-1 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1036296 |
---|---|
_version_ | 1806175110753681408 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Rad, Jamal Amani Parand, Kourosh Chakraverty, Snehashish |
author2_role | edt edt edt |
author2_variant | j a r ja jar k p kp s c sc |
author_facet | Rad, Jamal Amani Parand, Kourosh Chakraverty, Snehashish |
building | Verbundindex |
bvnumber | BV048885904 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9789811965531 (OCoLC)1376405297 (DE-599)BVBBV048885904 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/978-981-19-6553-1 |
edition | 1st ed. 2023 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03645nmm a2200769zcb4500</leader><controlfield tag="001">BV048885904</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230403s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811965531</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-1965-53-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-981-19-6553-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9789811965531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1376405297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048885904</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines</subfield><subfield code="b">Theory, Algorithms and Applications</subfield><subfield code="c">edited by Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer Nature Singapore</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 305 p. 83 illus., 58 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Industrial and Applied Mathematics</subfield><subfield code="x">2364-6845</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Analysis and Big Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automated Pattern Recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pattern recognition systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rad, Jamal Amani</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parand, Kourosh</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraverty, Snehashish</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-1965-52-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-1965-54-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-1965-55-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034150548</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-19-6553-1</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048885904 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:47:15Z |
indexdate | 2024-08-01T11:00:14Z |
institution | BVB |
isbn | 9789811965531 |
issn | 2364-6845 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034150548 |
oclc_num | 1376405297 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (XIV, 305 p. 83 illus., 58 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Nature Singapore Springer |
record_format | marc |
series2 | Industrial and Applied Mathematics |
spellingShingle | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications Field Theory and Polynomials Optimization Data Analysis and Big Data Machine Learning Automated Pattern Recognition Python Algebraic fields Polynomials Mathematical optimization Quantitative research Machine learning Pattern recognition systems Python (Computer program language) |
title | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications |
title_auth | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications |
title_exact_search | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications |
title_exact_search_txtP | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications |
title_full | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications edited by Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty |
title_fullStr | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications edited by Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty |
title_full_unstemmed | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines Theory, Algorithms and Applications edited by Jamal Amani Rad, Kourosh Parand, Snehashish Chakraverty |
title_short | Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines |
title_sort | learning with fractional orthogonal kernel classifiers in support vector machines theory algorithms and applications |
title_sub | Theory, Algorithms and Applications |
topic | Field Theory and Polynomials Optimization Data Analysis and Big Data Machine Learning Automated Pattern Recognition Python Algebraic fields Polynomials Mathematical optimization Quantitative research Machine learning Pattern recognition systems Python (Computer program language) |
topic_facet | Field Theory and Polynomials Optimization Data Analysis and Big Data Machine Learning Automated Pattern Recognition Python Algebraic fields Polynomials Mathematical optimization Quantitative research Machine learning Pattern recognition systems Python (Computer program language) |
url | https://doi.org/10.1007/978-981-19-6553-1 |
work_keys_str_mv | AT radjamalamani learningwithfractionalorthogonalkernelclassifiersinsupportvectormachinestheoryalgorithmsandapplications AT parandkourosh learningwithfractionalorthogonalkernelclassifiersinsupportvectormachinestheoryalgorithmsandapplications AT chakravertysnehashish learningwithfractionalorthogonalkernelclassifiersinsupportvectormachinestheoryalgorithmsandapplications |