Python for geospatial data analysis: theory, tools, and practice for location intelligence
In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Ausgabe: | first edition |
Schlagworte: | |
Zusammenfassung: | In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity... |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781098104764 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV048876481 | ||
003 | DE-604 | ||
005 | 20231004 | ||
007 | cr|uuu---uuuuu | ||
008 | 230324s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781098104764 |9 978-1-098-10476-4 | ||
035 | |a (OCoLC)1374563708 | ||
035 | |a (DE-599)HEB486032450 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a RB 10104 |0 (DE-625)142220:12617 |2 rvk | ||
100 | 1 | |a McClain, Bonny P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python for geospatial data analysis |b theory, tools, and practice for location intelligence |c Bonny P. McClain |
250 | |a first edition | ||
264 | 2 | |a Sebastopol, CA |b O'Reilly |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity... | |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumdaten |0 (DE-588)4206012-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Raumdaten |0 (DE-588)4206012-6 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-098-10479-5 |
912 | |a ZDB-4-NLEBK |
Datensatz im Suchindex
_version_ | 1805069255112130560 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | McClain, Bonny P. |
author_facet | McClain, Bonny P. |
author_role | aut |
author_sort | McClain, Bonny P. |
author_variant | b p m bp bpm |
building | Verbundindex |
bvnumber | BV048876481 |
classification_rvk | ST 250 RB 10104 |
collection | ZDB-4-NLEBK |
ctrlnum | (OCoLC)1374563708 (DE-599)HEB486032450 |
discipline | Informatik Geographie |
discipline_str_mv | Informatik |
edition | first edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV048876481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231004</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230324s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098104764</subfield><subfield code="9">978-1-098-10476-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374563708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB486032450</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10104</subfield><subfield code="0">(DE-625)142220:12617</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McClain, Bonny P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python for geospatial data analysis</subfield><subfield code="b">theory, tools, and practice for location intelligence</subfield><subfield code="c">Bonny P. McClain</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">first edition</subfield></datafield><datafield tag="264" ind1=" " ind2="2"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity...</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Raumdaten</subfield><subfield code="0">(DE-588)4206012-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-10479-5</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield></record></collection> |
id | DE-604.BV048876481 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:45:01Z |
indexdate | 2024-07-20T04:03:07Z |
institution | BVB |
isbn | 9781098104764 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034141285 |
oclc_num | 1374563708 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-4-NLEBK |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | McClain, Bonny P. Verfasser aut Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain first edition Sebastopol, CA O'Reilly 2022 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier In spatial data science, things in closer proximity to one another likely have more in common than things that are farther apart. With this practical book, geospatial professionals, data scientists, business analysts, geographers, geologists, and others familiar with data analysis and visualization will learn the fundamentals of spatial data analysis to gain a deeper understanding of their data questions. Author Bonny P. McClain demonstrates why detecting and quantifying patterns in geospatial data is vital. Both proprietary and open source platforms allow you to process and visualize spatial information. This book is for people familiar with data analysis or visualization who are eager to explore geospatial integration with Python. This book helps you: Understand the importance of applying spatial relationships in data science Select and apply data layering of both raster and vector graphics Apply location data to leverage spatial analytics Design informative and accurate maps Automate geographic data with Python scripts Explore Python packages for additional functionality Work with atypical data types such as polygons, shape files, and projections Understand the graphical syntax of spatial data science to stimulate curiosity... Visualisierung (DE-588)4188417-6 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Raumdaten (DE-588)4206012-6 gnd rswk-swf Raumdaten (DE-588)4206012-6 s Datenanalyse (DE-588)4123037-1 s Visualisierung (DE-588)4188417-6 s Python Programmiersprache (DE-588)4434275-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-098-10479-5 |
spellingShingle | McClain, Bonny P. Python for geospatial data analysis theory, tools, and practice for location intelligence Visualisierung (DE-588)4188417-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd Raumdaten (DE-588)4206012-6 gnd |
subject_GND | (DE-588)4188417-6 (DE-588)4434275-5 (DE-588)4123037-1 (DE-588)4206012-6 |
title | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_auth | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_exact_search | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_exact_search_txtP | Python for geospatial data analysis theory, tools, and practice for location intelligence |
title_full | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_fullStr | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_full_unstemmed | Python for geospatial data analysis theory, tools, and practice for location intelligence Bonny P. McClain |
title_short | Python for geospatial data analysis |
title_sort | python for geospatial data analysis theory tools and practice for location intelligence |
title_sub | theory, tools, and practice for location intelligence |
topic | Visualisierung (DE-588)4188417-6 gnd Python Programmiersprache (DE-588)4434275-5 gnd Datenanalyse (DE-588)4123037-1 gnd Raumdaten (DE-588)4206012-6 gnd |
topic_facet | Visualisierung Python Programmiersprache Datenanalyse Raumdaten |
work_keys_str_mv | AT mcclainbonnyp pythonforgeospatialdataanalysistheorytoolsandpracticeforlocationintelligence |