A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048871612 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230322s2022 gw |||| o||u| ||||||eng d | ||
015 | |a 23,O02 |2 dnb | ||
016 | 7 | |a 1279277467 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-214108 |2 urn | |
035 | |a (OCoLC)1374569855 | ||
035 | |a (DE-599)DNB1279277467 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-29 | ||
084 | |8 1\p |a 006.31 |2 23ksdnb | ||
084 | |8 2\p |a 004 |2 23sdnb | ||
100 | 1 | |a Pircher, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |c Thomas Pircher, Bianca Pircher, Andreas Feigenspan |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
653 | |a Machine learning algorithms | ||
653 | |a Algorithms | ||
653 | |a Neurons | ||
653 | |a Computer software | ||
653 | |a Software tools | ||
653 | |a Signal filtering | ||
653 | |a Preprocessing | ||
653 | |a Signal decoders | ||
700 | 1 | |a Pircher, Bianca |e Verfasser |4 aut | |
700 | 1 | |a Feigenspan, Andreas |e Verfasser |4 aut | |
787 | 0 | 8 | |i Sonderdruck aus |t PLoS ONE |g Vol. 17 (2022) |o 10.1371/journal.pone.0273501 |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-214108 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1279277467/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/21410 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034136498 | ||
883 | 0 | |8 1\p |a aepkn |c 0,82321 |d 20230128 |q DE-101 |u https://d-nb.info/provenance/plan#aepkn | |
883 | 0 | |8 2\p |a emasg |c 0,32465 |d 20230128 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20230127 |q DE-101 |u https://d-nb.info/provenance/plan#npi |
Datensatz im Suchindex
_version_ | 1804185009165172736 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pircher, Thomas Pircher, Bianca Feigenspan, Andreas |
author_facet | Pircher, Thomas Pircher, Bianca Feigenspan, Andreas |
author_role | aut aut aut |
author_sort | Pircher, Thomas |
author_variant | t p tp b p bp a f af |
building | Verbundindex |
bvnumber | BV048871612 |
collection | ebook |
ctrlnum | (OCoLC)1374569855 (DE-599)DNB1279277467 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02195nmm a2200541zc 4500</leader><controlfield tag="001">BV048871612</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230322s2022 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,O02</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1279277467</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-214108</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374569855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1279277467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">006.31</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pircher, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents</subfield><subfield code="c">Thomas Pircher, Bianca Pircher, Andreas Feigenspan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neurons</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer software</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Software tools</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Signal filtering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Preprocessing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Signal decoders</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pircher, Bianca</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feigenspan, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="787" ind1="0" ind2="8"><subfield code="i">Sonderdruck aus</subfield><subfield code="t">PLoS ONE</subfield><subfield code="g">Vol. 17 (2022)</subfield><subfield code="o">10.1371/journal.pone.0273501</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-214108</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1279277467/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/21410</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034136498</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">aepkn</subfield><subfield code="c">0,82321</subfield><subfield code="d">20230128</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepkn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,32465</subfield><subfield code="d">20230128</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20230127</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield></record></collection> |
id | DE-604.BV048871612 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:44:20Z |
indexdate | 2024-07-10T09:48:25Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034136498 |
oclc_num | 1374569855 |
open_access_boolean | 1 |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) |
record_format | marc |
spelling | Pircher, Thomas Verfasser aut A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents Thomas Pircher, Bianca Pircher, Andreas Feigenspan Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 2022 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Machine learning algorithms Algorithms Neurons Computer software Software tools Signal filtering Preprocessing Signal decoders Pircher, Bianca Verfasser aut Feigenspan, Andreas Verfasser aut Sonderdruck aus PLoS ONE Vol. 17 (2022) 10.1371/journal.pone.0273501 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-214108 Resolving-System kostenfrei Volltext https://d-nb.info/1279277467/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://open.fau.de/handle/openfau/21410 Verlag kostenfrei Volltext 1\p aepkn 0,82321 20230128 DE-101 https://d-nb.info/provenance/plan#aepkn 2\p emasg 0,32465 20230128 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20230127 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Pircher, Thomas Pircher, Bianca Feigenspan, Andreas A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title_auth | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title_exact_search | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title_exact_search_txtP | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title_full | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents Thomas Pircher, Bianca Pircher, Andreas Feigenspan |
title_fullStr | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents Thomas Pircher, Bianca Pircher, Andreas Feigenspan |
title_full_unstemmed | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents Thomas Pircher, Bianca Pircher, Andreas Feigenspan |
title_short | A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents |
title_sort | a novel machine learning based approach for the detection and analysis of spontaneous synaptic currents |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-214108 https://d-nb.info/1279277467/34 https://open.fau.de/handle/openfau/21410 |
work_keys_str_mv | AT pircherthomas anovelmachinelearningbasedapproachforthedetectionandanalysisofspontaneoussynapticcurrents AT pircherbianca anovelmachinelearningbasedapproachforthedetectionandanalysisofspontaneoussynapticcurrents AT feigenspanandreas anovelmachinelearningbasedapproachforthedetectionandanalysisofspontaneoussynapticcurrents |