Plato was not a mathematical Platonist:
This text shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge elements in the philosophy of mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | This text shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician's hypothetical method, by contrast, takes hypotheses as if they were first principles, so no metaphysical account of their truth is needed. Thus, we come to Plato's methodological as - if realism: in mathematics, we treat our hypotheses as if they were first principles, and, consequently, our objects as if they existed, and we do this for the purpose of solving problems. Taking the road suggested by Plato's 'Republic', this book shows that methodological commitments to mathematical objects are made in light of mathematical practice; foundational considerations; and, mathematical applicability |
Beschreibung: | Also issued in print: 2023. - "An online version of this work is published at doi.org/10.1017/9781009313797 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given"--Title page verso. - Includes bibliographical references |
Beschreibung: | 48 Seiten |
ISBN: | 9781009313780 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048867613 | ||
003 | DE-604 | ||
005 | 20230808 | ||
007 | t | ||
008 | 230320s2023 |||| 00||| eng d | ||
020 | |a 9781009313780 |c paperback |9 978-1-00-931378-0 | ||
035 | |a (OCoLC)1392134307 | ||
035 | |a (DE-599)BVBBV048867613 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 | ||
082 | 0 | |a 184 | |
100 | 1 | |a Landry, Elaine |d 1966- |e Verfasser |0 (DE-588)1088343236 |4 aut | |
245 | 1 | 0 | |a Plato was not a mathematical Platonist |c Elaine Landry |
264 | 1 | |a Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore |b Cambridge University Press |c 2023 | |
300 | |a 48 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Cambridge elements in the philosophy of mathematics | |
500 | |a Also issued in print: 2023. - "An online version of this work is published at doi.org/10.1017/9781009313797 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given"--Title page verso. - Includes bibliographical references | ||
520 | |a This text shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician's hypothetical method, by contrast, takes hypotheses as if they were first principles, so no metaphysical account of their truth is needed. Thus, we come to Plato's methodological as - if realism: in mathematics, we treat our hypotheses as if they were first principles, and, consequently, our objects as if they existed, and we do this for the purpose of solving problems. Taking the road suggested by Plato's 'Republic', this book shows that methodological commitments to mathematical objects are made in light of mathematical practice; foundational considerations; and, mathematical applicability | ||
600 | 1 | 4 | |a Plato |
600 | 0 | 7 | |a Plato |d v427-v347 |0 (DE-588)118594893 |2 gnd |9 rswk-swf |
650 | 4 | |a Mathematics / Philosophy | |
650 | 0 | 7 | |a Realismus |0 (DE-588)4048680-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metaphysik |0 (DE-588)4038936-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plato |d v427-v347 |0 (DE-588)118594893 |D p |
689 | 0 | 1 | |a Realismus |0 (DE-588)4048680-1 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 3 | |a Metaphysik |0 (DE-588)4038936-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-00-931379-7 |
856 | 4 | 2 | |m Digitalisierung BSB München - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034132578&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q BSB_NED_20230808 | |
940 | 1 | |q gbd_1 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034132578 | ||
942 | 1 | 1 | |c 001.09 |e 22/bsb |f 09014 |g 38 |
942 | 1 | 1 | |c 509 |e 22/bsb |f 09014 |g 38 |
Datensatz im Suchindex
_version_ | 1804185001715040256 |
---|---|
adam_text | Contents 1 Introduction 1 2 The Interpretive Lay of the Land 3 3 The Divided Line 9 4 Book? 16 5 The Good in Mathematics 30 6 Mathematics Versus Metaphysics 41 References 47
|
adam_txt |
Contents 1 Introduction 1 2 The Interpretive Lay of the Land 3 3 The Divided Line 9 4 Book? 16 5 The Good in Mathematics 30 6 Mathematics Versus Metaphysics 41 References 47 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Landry, Elaine 1966- |
author_GND | (DE-588)1088343236 |
author_facet | Landry, Elaine 1966- |
author_role | aut |
author_sort | Landry, Elaine 1966- |
author_variant | e l el |
building | Verbundindex |
bvnumber | BV048867613 |
ctrlnum | (OCoLC)1392134307 (DE-599)BVBBV048867613 |
dewey-full | 184 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 184 - Platonic philosophy |
dewey-raw | 184 |
dewey-search | 184 |
dewey-sort | 3184 |
dewey-tens | 180 - Ancient, medieval, eastern philosophy |
discipline | Philosophie |
discipline_str_mv | Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03217nam a2200505zc 4500</leader><controlfield tag="001">BV048867613</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230808 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230320s2023 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009313780</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-00-931378-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392134307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048867613</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">184</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landry, Elaine</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1088343236</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plato was not a mathematical Platonist</subfield><subfield code="c">Elaine Landry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">48 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements in the philosophy of mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Also issued in print: 2023. - "An online version of this work is published at doi.org/10.1017/9781009313797 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given"--Title page verso. - Includes bibliographical references</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician's hypothetical method, by contrast, takes hypotheses as if they were first principles, so no metaphysical account of their truth is needed. Thus, we come to Plato's methodological as - if realism: in mathematics, we treat our hypotheses as if they were first principles, and, consequently, our objects as if they existed, and we do this for the purpose of solving problems. Taking the road suggested by Plato's 'Republic', this book shows that methodological commitments to mathematical objects are made in light of mathematical practice; foundational considerations; and, mathematical applicability</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Plato</subfield></datafield><datafield tag="600" ind1="0" ind2="7"><subfield code="a">Plato</subfield><subfield code="d">v427-v347</subfield><subfield code="0">(DE-588)118594893</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Philosophy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Realismus</subfield><subfield code="0">(DE-588)4048680-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metaphysik</subfield><subfield code="0">(DE-588)4038936-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plato</subfield><subfield code="d">v427-v347</subfield><subfield code="0">(DE-588)118594893</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Realismus</subfield><subfield code="0">(DE-588)4048680-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Metaphysik</subfield><subfield code="0">(DE-588)4038936-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-00-931379-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung BSB München - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034132578&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">BSB_NED_20230808</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">gbd_1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034132578</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">001.09</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09014</subfield><subfield code="g">38</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">509</subfield><subfield code="e">22/bsb</subfield><subfield code="f">09014</subfield><subfield code="g">38</subfield></datafield></record></collection> |
id | DE-604.BV048867613 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:43:30Z |
indexdate | 2024-07-10T09:48:18Z |
institution | BVB |
isbn | 9781009313780 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034132578 |
oclc_num | 1392134307 |
open_access_boolean | |
owner | DE-12 |
owner_facet | DE-12 |
physical | 48 Seiten |
psigel | BSB_NED_20230808 gbd_1 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements in the philosophy of mathematics |
spelling | Landry, Elaine 1966- Verfasser (DE-588)1088343236 aut Plato was not a mathematical Platonist Elaine Landry Cambridge ; New York ; Port Melbourne ; New Delhi ; Singapore Cambridge University Press 2023 48 Seiten txt rdacontent n rdamedia nc rdacarrier Cambridge elements in the philosophy of mathematics Also issued in print: 2023. - "An online version of this work is published at doi.org/10.1017/9781009313797 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given"--Title page verso. - Includes bibliographical references This text shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician's hypothetical method, by contrast, takes hypotheses as if they were first principles, so no metaphysical account of their truth is needed. Thus, we come to Plato's methodological as - if realism: in mathematics, we treat our hypotheses as if they were first principles, and, consequently, our objects as if they existed, and we do this for the purpose of solving problems. Taking the road suggested by Plato's 'Republic', this book shows that methodological commitments to mathematical objects are made in light of mathematical practice; foundational considerations; and, mathematical applicability Plato Plato v427-v347 (DE-588)118594893 gnd rswk-swf Mathematics / Philosophy Realismus (DE-588)4048680-1 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Metaphysik (DE-588)4038936-4 gnd rswk-swf Plato v427-v347 (DE-588)118594893 p Realismus (DE-588)4048680-1 s Mathematik (DE-588)4037944-9 s Metaphysik (DE-588)4038936-4 s DE-604 Erscheint auch als Online-Ausgabe 978-1-00-931379-7 Digitalisierung BSB München - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034132578&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Landry, Elaine 1966- Plato was not a mathematical Platonist Plato Plato v427-v347 (DE-588)118594893 gnd Mathematics / Philosophy Realismus (DE-588)4048680-1 gnd Mathematik (DE-588)4037944-9 gnd Metaphysik (DE-588)4038936-4 gnd |
subject_GND | (DE-588)118594893 (DE-588)4048680-1 (DE-588)4037944-9 (DE-588)4038936-4 |
title | Plato was not a mathematical Platonist |
title_auth | Plato was not a mathematical Platonist |
title_exact_search | Plato was not a mathematical Platonist |
title_exact_search_txtP | Plato was not a mathematical Platonist |
title_full | Plato was not a mathematical Platonist Elaine Landry |
title_fullStr | Plato was not a mathematical Platonist Elaine Landry |
title_full_unstemmed | Plato was not a mathematical Platonist Elaine Landry |
title_short | Plato was not a mathematical Platonist |
title_sort | plato was not a mathematical platonist |
topic | Plato Plato v427-v347 (DE-588)118594893 gnd Mathematics / Philosophy Realismus (DE-588)4048680-1 gnd Mathematik (DE-588)4037944-9 gnd Metaphysik (DE-588)4038936-4 gnd |
topic_facet | Plato Plato v427-v347 Mathematics / Philosophy Realismus Mathematik Metaphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034132578&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT landryelaine platowasnotamathematicalplatonist |