Explainable Deep Learning AI: Methods and Challenges
Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overv...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
AP Academic Press
[2023]
|
Schlagworte: | |
Zusammenfassung: | Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. |
Beschreibung: | xv, 329 Seiten Illustrationen, Diagramme 450 grams. |
ISBN: | 9780323960984 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048867430 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 230320s2023 a||| |||| 00||| eng d | ||
020 | |a 9780323960984 |9 978-0-323-96098-4 | ||
024 | 3 | |a 9780323960984 | |
035 | |a (ELiSA)ELiSA-9780323960984 | ||
035 | |a (OCoLC)1374570433 | ||
035 | |a (DE-599)HBZHT021713593 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1102 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
245 | 1 | 0 | |a Explainable Deep Learning AI |b Methods and Challenges |c edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot |
264 | 1 | |a London |b AP Academic Press |c [2023] | |
300 | |a xv, 329 Seiten |b Illustrationen, Diagramme |c 450 grams. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. | |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
653 | |a Künstliche Intelligenz | ||
653 | |a Business Intelligence | ||
653 | |a Computing & Security | ||
653 | |a Single-item retail product | ||
653 | |a Wissensbasierte Systeme, Expertensysteme | ||
653 | 0 | |a Explainable AI; XAI; Deep Learning; Back-Propagation methods; Perturbation-based methods; applications; evaluation | |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Benois-Pineau, Jenny |0 (DE-588)1022635964 |4 edt | |
700 | 1 | |a Bourqui, Romain |4 edt | |
700 | 1 | |a Petkovic, Dragutin |4 edt | |
700 | 1 | |a Quénot, Georges |4 edt | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034132404 |
Datensatz im Suchindex
_version_ | 1804185001351184384 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Benois-Pineau, Jenny Bourqui, Romain Petkovic, Dragutin Quénot, Georges |
author2_role | edt edt edt edt |
author2_variant | j b p jbp r b rb d p dp g q gq |
author_GND | (DE-588)1022635964 |
author_facet | Benois-Pineau, Jenny Bourqui, Romain Petkovic, Dragutin Quénot, Georges |
building | Verbundindex |
bvnumber | BV048867430 |
classification_rvk | ST 302 |
ctrlnum | (ELiSA)ELiSA-9780323960984 (OCoLC)1374570433 (DE-599)HBZHT021713593 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02566nam a2200469 c 4500</leader><controlfield tag="001">BV048867430</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230320s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323960984</subfield><subfield code="9">978-0-323-96098-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780323960984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9780323960984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374570433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT021713593</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explainable Deep Learning AI</subfield><subfield code="b">Methods and Challenges</subfield><subfield code="c">edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">AP Academic Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 329 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">450 grams.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Business Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computing & Security</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Single-item retail product</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wissensbasierte Systeme, Expertensysteme</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Explainable AI; XAI; Deep Learning; Back-Propagation methods; Perturbation-based methods; applications; evaluation</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benois-Pineau, Jenny</subfield><subfield code="0">(DE-588)1022635964</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bourqui, Romain</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petkovic, Dragutin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quénot, Georges</subfield><subfield code="4">edt</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034132404</subfield></datafield></record></collection> |
id | DE-604.BV048867430 |
illustrated | Illustrated |
index_date | 2024-07-03T21:43:28Z |
indexdate | 2024-07-10T09:48:17Z |
institution | BVB |
isbn | 9780323960984 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034132404 |
oclc_num | 1374570433 |
open_access_boolean | |
owner | DE-1043 DE-1102 |
owner_facet | DE-1043 DE-1102 |
physical | xv, 329 Seiten Illustrationen, Diagramme 450 grams. |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | AP Academic Press |
record_format | marc |
spelling | Explainable Deep Learning AI Methods and Challenges edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot London AP Academic Press [2023] xv, 329 Seiten Illustrationen, Diagramme 450 grams. txt rdacontent n rdamedia nc rdacarrier Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI - deep learning, which become the necessary condition in various applications of artificial intelligence. The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Künstliche Intelligenz Business Intelligence Computing & Security Single-item retail product Wissensbasierte Systeme, Expertensysteme Explainable AI; XAI; Deep Learning; Back-Propagation methods; Perturbation-based methods; applications; evaluation Deep learning (DE-588)1135597375 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Benois-Pineau, Jenny (DE-588)1022635964 edt Bourqui, Romain edt Petkovic, Dragutin edt Quénot, Georges edt |
spellingShingle | Explainable Deep Learning AI Methods and Challenges Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)4033447-8 (DE-588)1135597375 |
title | Explainable Deep Learning AI Methods and Challenges |
title_auth | Explainable Deep Learning AI Methods and Challenges |
title_exact_search | Explainable Deep Learning AI Methods and Challenges |
title_exact_search_txtP | Explainable Deep Learning AI Methods and Challenges |
title_full | Explainable Deep Learning AI Methods and Challenges edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot |
title_fullStr | Explainable Deep Learning AI Methods and Challenges edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot |
title_full_unstemmed | Explainable Deep Learning AI Methods and Challenges edited by Jenny Benois-Pineau, Romain Bourqui, Dragutin Petkovic, Georges Quénot |
title_short | Explainable Deep Learning AI |
title_sort | explainable deep learning ai methods and challenges |
title_sub | Methods and Challenges |
topic | Künstliche Intelligenz (DE-588)4033447-8 gnd Deep learning (DE-588)1135597375 gnd |
topic_facet | Künstliche Intelligenz Deep learning |
work_keys_str_mv | AT benoispineaujenny explainabledeeplearningaimethodsandchallenges AT bourquiromain explainabledeeplearningaimethodsandchallenges AT petkovicdragutin explainabledeeplearningaimethodsandchallenges AT quenotgeorges explainabledeeplearningaimethodsandchallenges |