Hamilton’s principle in continuum mechanics:
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedago...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2021]
|
Schlagworte: | |
Zusammenfassung: | This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces |
Beschreibung: | Mechanics of Systems of Particles.- Mathematical Preliminaries.- Mechanics of Continuous Media.- Motions and Comparison Motions of a Mixture.- Singular Surfaces.- Index |
Beschreibung: | xiv, 104 Seiten 197 grams |
ISBN: | 9783030903084 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048846984 | ||
003 | DE-604 | ||
005 | 20230411 | ||
007 | t| | ||
008 | 230306s2021 xx |||| 00||| eng d | ||
020 | |a 9783030903084 |c hbk |9 978-3-030-90308-4 | ||
024 | 3 | |a 9783030903084 | |
035 | |a (OCoLC)1376415839 | ||
035 | |a (DE-599)BVBBV048846984 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Bedford, Anthony |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hamilton’s principle in continuum mechanics |c Anthony Bedford |
264 | 1 | |a Cham, Switzerland |b Springer |c [2021] | |
300 | |a xiv, 104 Seiten |c 197 grams | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Mechanics of Systems of Particles.- Mathematical Preliminaries.- Mechanics of Continuous Media.- Motions and Comparison Motions of a Mixture.- Singular Surfaces.- Index | ||
520 | |a This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces | ||
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of variations | |
650 | 4 | |a Physics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mechanics, Applied | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Continuum mechanics | |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Physik, Astronomie/Mechanik, Akustik | ||
689 | 0 | 0 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |D s |
689 | 0 | 1 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-90306-0 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034112320 |
Datensatz im Suchindex
_version_ | 1820882889455173632 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bedford, Anthony |
author_facet | Bedford, Anthony |
author_role | aut |
author_sort | Bedford, Anthony |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV048846984 |
ctrlnum | (OCoLC)1376415839 (DE-599)BVBBV048846984 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048846984</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230411</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">230306s2021 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030903084</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-030-90308-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783030903084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1376415839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048846984</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bedford, Anthony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamilton’s principle in continuum mechanics</subfield><subfield code="c">Anthony Bedford</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 104 Seiten</subfield><subfield code="c">197 grams</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mechanics of Systems of Particles.- Mathematical Preliminaries.- Mechanics of Continuous Media.- Motions and Comparison Motions of a Mixture.- Singular Surfaces.- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Physik, Astronomie/Mechanik, Akustik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-90306-0</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034112320</subfield></datafield></record></collection> |
id | DE-604.BV048846984 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:39:08Z |
indexdate | 2025-01-10T17:14:04Z |
institution | BVB |
isbn | 9783030903084 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034112320 |
oclc_num | 1376415839 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xiv, 104 Seiten 197 grams |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
spelling | Bedford, Anthony Verfasser aut Hamilton’s principle in continuum mechanics Anthony Bedford Cham, Switzerland Springer [2021] xiv, 104 Seiten 197 grams txt rdacontent n rdamedia nc rdacarrier Mechanics of Systems of Particles.- Mathematical Preliminaries.- Mechanics of Continuous Media.- Motions and Comparison Motions of a Mixture.- Singular Surfaces.- Index This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces Mathematical optimization Calculus of variations Physics Algebra Mechanics, Applied Mathematical physics Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches Prinzip (DE-588)4158958-0 gnd rswk-swf Hardcover, Softcover / Physik, Astronomie/Mechanik, Akustik Hamiltonsches Prinzip (DE-588)4158958-0 s Kontinuumsmechanik (DE-588)4032296-8 s DE-604 Hamiltonsches System (DE-588)4139943-2 s Erscheint auch als Online-Ausgabe 978-3-030-90306-0 |
spellingShingle | Bedford, Anthony Hamilton’s principle in continuum mechanics Mathematical optimization Calculus of variations Physics Algebra Mechanics, Applied Mathematical physics Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4139943-2 (DE-588)4158958-0 |
title | Hamilton’s principle in continuum mechanics |
title_auth | Hamilton’s principle in continuum mechanics |
title_exact_search | Hamilton’s principle in continuum mechanics |
title_exact_search_txtP | Hamilton’s principle in continuum mechanics |
title_full | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_fullStr | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_full_unstemmed | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_short | Hamilton’s principle in continuum mechanics |
title_sort | hamilton s principle in continuum mechanics |
topic | Mathematical optimization Calculus of variations Physics Algebra Mechanics, Applied Mathematical physics Continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
topic_facet | Mathematical optimization Calculus of variations Physics Algebra Mechanics, Applied Mathematical physics Continuum mechanics Kontinuumsmechanik Hamiltonsches System Hamiltonsches Prinzip |
work_keys_str_mv | AT bedfordanthony hamiltonsprincipleincontinuummechanics |