Asymptotic perturbation methods: for nonlinear differential equations in physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2023]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41421-5/ Inhaltsverzeichnis |
Beschreibung: | xvi, 237 Seiten Illustrationen, Diagramme |
ISBN: | 9783527414215 3527414215 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048844386 | ||
003 | DE-604 | ||
005 | 20230727 | ||
007 | t | ||
008 | 230306s2023 gw a||| |||| 00||| eng d | ||
015 | |a 22,N43 |2 dnb | ||
016 | 7 | |a 1270837710 |2 DE-101 | |
020 | |a 9783527414215 |9 978-3-527-41421-5 | ||
020 | |a 3527414215 |9 3-527-41421-5 | ||
024 | 3 | |a 9783527414215 | |
028 | 5 | 2 | |a Bestellnummer: 1141421 000 |
035 | |a (OCoLC)1374366092 | ||
035 | |a (DE-599)DNB1270837710 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-11 |a DE-703 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Maccari, Attilio |e Verfasser |0 (DE-588)1285968913 |4 aut | |
245 | 1 | 0 | |a Asymptotic perturbation methods |b for nonlinear differential equations in physics |c Attilio Maccari |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2023] | |
300 | |a xvi, 237 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Computational / Numerical Methods | ||
653 | |a Computational Chemistry & Molecular Modeling | ||
653 | |a Computational Chemistry u. Molecular Modeling | ||
653 | |a Maschinenbau | ||
653 | |a Mechanical Engineering | ||
653 | |a Nichtlineare u. komplexe Systeme | ||
653 | |a Nichtlineares System | ||
653 | |a Nonlinear and Complex Systems | ||
653 | |a Physics | ||
653 | |a Physik | ||
653 | |a Rechnergestützte / Numerische Verfahren im Maschinenbau | ||
653 | |a Stabilitätsanalyse | ||
653 | |a Stabilitätstheorie | ||
653 | |a CHD0: Computational Chemistry u. Molecular Modeling | ||
653 | |a MEA0: Rechnergestützte / Numerische Verfahren im Maschinenbau | ||
653 | |a PH32: Nichtlineare u. komplexe Systeme | ||
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-84172-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-84173-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-84174-5 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41421-5/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034109743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034109743 |
Datensatz im Suchindex
_version_ | 1804184957946429440 |
---|---|
adam_text | V
CONTENTS
ABOUT
THE
AUTHOR
XL
FOREWORD
XIII
INTRODUCTION
XV
1
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
OSCILLATORS
1
1.1
1.2
1.3
1.4
1.5
1.6
INTRODUCTION
1
NONLINEAR
DYNAMICAL
SYSTEMS
3
THE
APPROXIMATE
SOLUTION
5
COMPARISON
WITH
THE
RESULTS
OF
THE
NUMERICAL
INTEGRATION
10
EXTERNAL
EXCITATION
IN
RESONANCE
WITH
THE
OSCILLATOR
11
CONCLUSION
16
2
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
REMARKABLE
NONLINEAR
SYSTEMS
19
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
INTRODUCTION
19
PERIODIC
SOLUTIONS
AND
THEIR
STABILITY
21
GLOBAL
ANALYSIS
OF
THE
MODEL
SYSTEM
27
INFINITE-PERIOD
SYMMETRIC
HOMOCLINIC
BIFURCATION
35
A
FEW
CONSIDERATIONS
41
A
PECULIAR
QUASIPERIODIC
ATTRACTOR
42
BUILDING
AN
APPROXIMATE
SOLUTION
44
RESULTS
FROM
NUMERICAL
SIMULATION
46
CONCLUSION
52
3
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
VIBRATION
CONTROL
WITH
TIME-DELAY
STATE
FEEDBACK
53
3.1
3.2
3.3
3.4
3.4.1
INTRODUCTION
53
TIME-DELAY
STATE
FEEDBACK
53
THE
PERTURBATION
METHOD
56
STABILITY
ANALYSIS
AND
PARAMETRIC
RESONANCE
CONTROL
59
THE
FREQUENCY-RESPONSE
CURVE
IS
62
VI
CONTENTS
3.5
3.6
SUPPRESSION
OF
THE
TWO-PERIOD
QUASIPERIODIC
MOTION
63
VIBRATION
CONTROL
FOR
OTHER
NONLINEAR
SYSTEMS
68
4
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
VIBRATION
CONTROL
BY
NONLOCAL
DYNAMICS
69
4.1
4.2
4.3
4.4
4.5
INTRODUCTION
69
VIBRATION
CONTROL
FOR
THE
VAN
DER
POL
EQUATION
72
STABILITY
ANALYSIS
AND
PARAMETRIC
RESONANCE
CONTROL
74
SUPPRESSION
OF
THE
TWO-PERIOD
QUASIPERIODIC
MOTION
79
CONCLUSION
82
5
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
CONTINUOUS
SYSTEMS
83
5.1
5.2
INTRODUCTION
83
THE
APPROXIMATE
SOLUTION
FOR
THE
PRIMARY
RESONANCE
OF
THE
NTH
MODE
86
5.3
THE
APPROXIMATE
SOLUTION
FOR
THE
SUBHARMONIC
RESONANCE
OF
ORDER
ONE-HALF
OF
THE
NTH
MODE
91
5.4
CONCLUSION
93
6
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
DISPERSIVE
NONLINEAR
PARTIAL
DIFFERENTIAL
EQUATIONS
95
6.1
6.2
INTRODUCTION
95
MODEL
NONLINEAR
PDES
OBTAINED
FROM
THE
KADOMTSEV-PETVIASHVILI
EQUATION
97
6.3
6.4
6.5
6.6
6.7
6.8
THE
LAX
PAIR
FOR
THE
MODEL
NONLINEAR
PDE
98
A
FEW
REMARKS
100
A
GENERALIZED
HIROTA
EQUATION
IN
2
+1
DIMENSIONS
100
MODEL
NONLINEAR
PDES
OBTAINED
FROM
THE
KP
EQUATION
101
THE
LAX
PAIR
FOR
THE
HIROTA-MACCARI
EQUATION
103
CONCLUSION
105
7
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
PHYSICS
PROBLEMS
107
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
INTRODUCTION
107
DERIVATION
OF
THE
MODEL
SYSTEM
108
INTEGRABILITY
OF
THE
MODEL
SYSTEM
OF
EQUATIONS
111
EXACT
SOLUTIONS
FOR
THE
C-INTEGRABLE
MODEL
EQUATION
112
NONLINEAR
WAVE
112
SOLITONS
112
DROMIONS
113
LUMPS
116
RING
SOLITONS
116
INSTANTONS
117
CONTENTS
VII
7.4.7
7.5
MOVING
BREATHER-LIKE
STRUCTURES
117
CONCLUSION
120
8
THE
ASYMPTOTIC
PERTURBATION
MODEL FOR
ELEMENTARY
PARTICLE
PHYSICS
121
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.5
8.6
8.7
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.9
8.9.1
8.9.2
8.9.3
8.9.4
8.9.5
8.9.6
8.10
INTRODUCTION
121
DERIVATION
OF
THE
MODEL
SYSTEM
122
INTEGRABILITY
OF
THE
MODEL
SYSTEM
OF
EQUATIONS
124
EXACT
SOLUTIONS
FOR
THE
C-INTEGRABLE
MODEL
EQUATION
125
N
ONLINEAR
WAVE
125
SOLITONS
126
DROMIONS
126
LUMPS
127
RING
SOLITONS
127
INSTANTONS
129
MOVING
BREATHER-LIKE
STRUCTURES
129
A
FEW
CONSIDERATIONS
130
HIDDEN
SYMMETRY
MODELS
130
DERIVATION
OF
THE
MODEL
SYSTEM
133
COHERENT
SOLUTIONS
138
NONLINEAR
WAVE
138
SOLITONS
138
DROMIONS
139
LUMPS
139
RING
SOLITONS
140
INSTANTONS
141
MOVING
BREATHER-LIKE
STRUCTURES
142
CHAOTIC
AND
FRACTAL
SOLUTIONS
143
CHAOTIC-CHAOTIC
AND
CHAOTIC-PERIODIC
PATTERNS
143
CHAOTIC
LINE
SOLITON
SOLUTIONS
145
CHAOTIC
DROMION
AND
LUMP
PATTERNS
145
NONLOCAL
FRACTAL
SOLUTIONS
147
FRACTAL
DROMION
AND
LUMP
SOLUTIONS
147
STOCHASTIC
FRACTAL
DROMION
AND
LUMP
EXCITATIONS
148
CONCLUSION
150
9
9.1
9.2
9.3
9.4
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
ROGUE
WAVES
151
INTRODUCTION
151
THE
MATHEMATICAL
FRAMEWORK
153
THE
MACCARI
SYSTEM
154
ROGUE
WAVE
PHYSICAL
EXPLANATION
ACCORDING
TO
THE
MACCARI
SYSTEM
AND
BLOWING
SOLUTIONS
156
9.5
CONCLUSION
158
VIII
CONTENTS
10
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
FRACTAL
AND
CHAOTIC
SOLUTIONS
159
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.5
INTRODUCTION
159
A
NEW
INTEGRABLE
SYSTEM
FROM
THE
DISPERSIVE
LONG-WAVE
EQUATION
161
NONLINEAR
COHERENT
SOLUTIONS
165
NONLINEAR
WAVE
165
SOLITONS
165
DROMIONS
166
LUMPS
166
RING
SOLITONS
167
INSTANTONS
167
MOVING
BREATHER-LIKE
STRUCTURES
168
CHAOTIC
AND
FRACTAL
SOLUTIONS
168
CHAOTIC-CHAOTIC
AND
CHAOTIC-PERIODIC
PATTERNS
168
CHAOTIC
LINE
SOLITON
SOLUTIONS
168
CHAOTIC
DROMION
AND
LUMP
PATTERNS
169
NONLOCAL
FRACTAL
SOLUTIONS
169
FRACTAL
DROMION
AND
LUMP
SOLUTIONS
169
STOCHASTIC
FRACTAL
EXCITATIONS
170
STOCHASTIC
FRACTAL
DROMION
AND
LUMP
EXCITATIONS
170
CONCLUSION
171
11
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
RELATIVISTIC
AND
QUANTUM
PHYSICS
173
11.1
11.2
11.3
11.4
11.5
11.6
11.7
INTRODUCTION
173
THE
NLS
EQUATION
FOR
A,
0
174
THE
NLS
EQUATION
FOR
A,
0
176
A
POSSIBLE
EXTENSION
178
THE
NONRELATIVISTIC
CASE
180
THE
RELATIVISTIC
CASE
183
CONCLUSION
185
12
12.1
12.2
12.3
12.4
12.5
COSMOLOGY
187
INTRODUCTION
187
A
NEW
FIELD
EQUATION
188
EXACT
SOLUTION
IN
THE
ROBERTSON-WALKER
METRICS
191
ENTROPY
PRODUCTION
195
CONCLUSION
197
13
CONFINEMENT
AND
ASYMPTOTIC
FREEDOM
IN
A
PURELY
GEOMETRIC
FRAMEWORK
199
13.1
13.2
13.3
INTRODUCTION
199
THE
UNCERTAINTY
PRINCIPLE
201
CONFINEMENT
AND
ASYMPTOTIC
FREEDOM
FOR
THE
STRONG
INTERACTION
203
CONTENTS
IX
13.4
13.5
THE
MOTION
OF
A
LIGHT
RAY
INTO
A
HADRON
207
CONCLUSION
208
14
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
A
REVERSE
INFINITE-PERIOD
BIFURCATION
IN
THE
NONLINEAR
SCHRODINGER
EQUATION
209
14.1
14.2
14.3
14.4
INTRODUCTION
209
BUILDING
AN
APPROXIMATE
SOLUTION
210
A
REVERSE
INFINITE-PERIOD
BIFURCATION
212
CONCLUSION
215
CONCLUSION
217
REFERENCES
219
INDEX
235
|
adam_txt |
V
CONTENTS
ABOUT
THE
AUTHOR
XL
FOREWORD
XIII
INTRODUCTION
XV
1
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
OSCILLATORS
1
1.1
1.2
1.3
1.4
1.5
1.6
INTRODUCTION
1
NONLINEAR
DYNAMICAL
SYSTEMS
3
THE
APPROXIMATE
SOLUTION
5
COMPARISON
WITH
THE
RESULTS
OF
THE
NUMERICAL
INTEGRATION
10
EXTERNAL
EXCITATION
IN
RESONANCE
WITH
THE
OSCILLATOR
11
CONCLUSION
16
2
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
REMARKABLE
NONLINEAR
SYSTEMS
19
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
INTRODUCTION
19
PERIODIC
SOLUTIONS
AND
THEIR
STABILITY
21
GLOBAL
ANALYSIS
OF
THE
MODEL
SYSTEM
27
INFINITE-PERIOD
SYMMETRIC
HOMOCLINIC
BIFURCATION
35
A
FEW
CONSIDERATIONS
41
A
PECULIAR
QUASIPERIODIC
ATTRACTOR
42
BUILDING
AN
APPROXIMATE
SOLUTION
44
RESULTS
FROM
NUMERICAL
SIMULATION
46
CONCLUSION
52
3
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
VIBRATION
CONTROL
WITH
TIME-DELAY
STATE
FEEDBACK
53
3.1
3.2
3.3
3.4
3.4.1
INTRODUCTION
53
TIME-DELAY
STATE
FEEDBACK
53
THE
PERTURBATION
METHOD
56
STABILITY
ANALYSIS
AND
PARAMETRIC
RESONANCE
CONTROL
59
THE
FREQUENCY-RESPONSE
CURVE
IS
62
VI
CONTENTS
3.5
3.6
SUPPRESSION
OF
THE
TWO-PERIOD
QUASIPERIODIC
MOTION
63
VIBRATION
CONTROL
FOR
OTHER
NONLINEAR
SYSTEMS
68
4
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
VIBRATION
CONTROL
BY
NONLOCAL
DYNAMICS
69
4.1
4.2
4.3
4.4
4.5
INTRODUCTION
69
VIBRATION
CONTROL
FOR
THE
VAN
DER
POL
EQUATION
72
STABILITY
ANALYSIS
AND
PARAMETRIC
RESONANCE
CONTROL
74
SUPPRESSION
OF
THE
TWO-PERIOD
QUASIPERIODIC
MOTION
79
CONCLUSION
82
5
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
CONTINUOUS
SYSTEMS
83
5.1
5.2
INTRODUCTION
83
THE
APPROXIMATE
SOLUTION
FOR
THE
PRIMARY
RESONANCE
OF
THE
NTH
MODE
86
5.3
THE
APPROXIMATE
SOLUTION
FOR
THE
SUBHARMONIC
RESONANCE
OF
ORDER
ONE-HALF
OF
THE
NTH
MODE
91
5.4
CONCLUSION
93
6
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
DISPERSIVE
NONLINEAR
PARTIAL
DIFFERENTIAL
EQUATIONS
95
6.1
6.2
INTRODUCTION
95
MODEL
NONLINEAR
PDES
OBTAINED
FROM
THE
KADOMTSEV-PETVIASHVILI
EQUATION
97
6.3
6.4
6.5
6.6
6.7
6.8
THE
LAX
PAIR
FOR
THE
MODEL
NONLINEAR
PDE
98
A
FEW
REMARKS
100
A
GENERALIZED
HIROTA
EQUATION
IN
2
+1
DIMENSIONS
100
MODEL
NONLINEAR
PDES
OBTAINED
FROM
THE
KP
EQUATION
101
THE
LAX
PAIR
FOR
THE
HIROTA-MACCARI
EQUATION
103
CONCLUSION
105
7
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
PHYSICS
PROBLEMS
107
7.1
7.2
7.3
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
INTRODUCTION
107
DERIVATION
OF
THE
MODEL
SYSTEM
108
INTEGRABILITY
OF
THE
MODEL
SYSTEM
OF
EQUATIONS
111
EXACT
SOLUTIONS
FOR
THE
C-INTEGRABLE
MODEL
EQUATION
112
NONLINEAR
WAVE
112
SOLITONS
112
DROMIONS
113
LUMPS
116
RING
SOLITONS
116
INSTANTONS
117
CONTENTS
VII
7.4.7
7.5
MOVING
BREATHER-LIKE
STRUCTURES
117
CONCLUSION
120
8
THE
ASYMPTOTIC
PERTURBATION
MODEL FOR
ELEMENTARY
PARTICLE
PHYSICS
121
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.5
8.6
8.7
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.9
8.9.1
8.9.2
8.9.3
8.9.4
8.9.5
8.9.6
8.10
INTRODUCTION
121
DERIVATION
OF
THE
MODEL
SYSTEM
122
INTEGRABILITY
OF
THE
MODEL
SYSTEM
OF
EQUATIONS
124
EXACT
SOLUTIONS
FOR
THE
C-INTEGRABLE
MODEL
EQUATION
125
N
ONLINEAR
WAVE
125
SOLITONS
126
DROMIONS
126
LUMPS
127
RING
SOLITONS
127
INSTANTONS
129
MOVING
BREATHER-LIKE
STRUCTURES
129
A
FEW
CONSIDERATIONS
130
HIDDEN
SYMMETRY
MODELS
130
DERIVATION
OF
THE
MODEL
SYSTEM
133
COHERENT
SOLUTIONS
138
NONLINEAR
WAVE
138
SOLITONS
138
DROMIONS
139
LUMPS
139
RING
SOLITONS
140
INSTANTONS
141
MOVING
BREATHER-LIKE
STRUCTURES
142
CHAOTIC
AND
FRACTAL
SOLUTIONS
143
CHAOTIC-CHAOTIC
AND
CHAOTIC-PERIODIC
PATTERNS
143
CHAOTIC
LINE
SOLITON
SOLUTIONS
145
CHAOTIC
DROMION
AND
LUMP
PATTERNS
145
NONLOCAL
FRACTAL
SOLUTIONS
147
FRACTAL
DROMION
AND
LUMP
SOLUTIONS
147
STOCHASTIC
FRACTAL
DROMION
AND
LUMP
EXCITATIONS
148
CONCLUSION
150
9
9.1
9.2
9.3
9.4
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
ROGUE
WAVES
151
INTRODUCTION
151
THE
MATHEMATICAL
FRAMEWORK
153
THE
MACCARI
SYSTEM
154
ROGUE
WAVE
PHYSICAL
EXPLANATION
ACCORDING
TO
THE
MACCARI
SYSTEM
AND
BLOWING
SOLUTIONS
156
9.5
CONCLUSION
158
VIII
CONTENTS
10
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
FRACTAL
AND
CHAOTIC
SOLUTIONS
159
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.5
INTRODUCTION
159
A
NEW
INTEGRABLE
SYSTEM
FROM
THE
DISPERSIVE
LONG-WAVE
EQUATION
161
NONLINEAR
COHERENT
SOLUTIONS
165
NONLINEAR
WAVE
165
SOLITONS
165
DROMIONS
166
LUMPS
166
RING
SOLITONS
167
INSTANTONS
167
MOVING
BREATHER-LIKE
STRUCTURES
168
CHAOTIC
AND
FRACTAL
SOLUTIONS
168
CHAOTIC-CHAOTIC
AND
CHAOTIC-PERIODIC
PATTERNS
168
CHAOTIC
LINE
SOLITON
SOLUTIONS
168
CHAOTIC
DROMION
AND
LUMP
PATTERNS
169
NONLOCAL
FRACTAL
SOLUTIONS
169
FRACTAL
DROMION
AND
LUMP
SOLUTIONS
169
STOCHASTIC
FRACTAL
EXCITATIONS
170
STOCHASTIC
FRACTAL
DROMION
AND
LUMP
EXCITATIONS
170
CONCLUSION
171
11
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
NONLINEAR
RELATIVISTIC
AND
QUANTUM
PHYSICS
173
11.1
11.2
11.3
11.4
11.5
11.6
11.7
INTRODUCTION
173
THE
NLS
EQUATION
FOR
A,
0
174
THE
NLS
EQUATION
FOR
A,
0
176
A
POSSIBLE
EXTENSION
178
THE
NONRELATIVISTIC
CASE
180
THE
RELATIVISTIC
CASE
183
CONCLUSION
185
12
12.1
12.2
12.3
12.4
12.5
COSMOLOGY
187
INTRODUCTION
187
A
NEW
FIELD
EQUATION
188
EXACT
SOLUTION
IN
THE
ROBERTSON-WALKER
METRICS
191
ENTROPY
PRODUCTION
195
CONCLUSION
197
13
CONFINEMENT
AND
ASYMPTOTIC
FREEDOM
IN
A
PURELY
GEOMETRIC
FRAMEWORK
199
13.1
13.2
13.3
INTRODUCTION
199
THE
UNCERTAINTY
PRINCIPLE
201
CONFINEMENT
AND
ASYMPTOTIC
FREEDOM
FOR
THE
STRONG
INTERACTION
203
CONTENTS
IX
13.4
13.5
THE
MOTION
OF
A
LIGHT
RAY
INTO
A
HADRON
207
CONCLUSION
208
14
THE
ASYMPTOTIC
PERTURBATION
METHOD
FOR
A
REVERSE
INFINITE-PERIOD
BIFURCATION
IN
THE
NONLINEAR
SCHRODINGER
EQUATION
209
14.1
14.2
14.3
14.4
INTRODUCTION
209
BUILDING
AN
APPROXIMATE
SOLUTION
210
A
REVERSE
INFINITE-PERIOD
BIFURCATION
212
CONCLUSION
215
CONCLUSION
217
REFERENCES
219
INDEX
235 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Maccari, Attilio |
author_GND | (DE-588)1285968913 |
author_facet | Maccari, Attilio |
author_role | aut |
author_sort | Maccari, Attilio |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV048844386 |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)1374366092 (DE-599)DNB1270837710 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02471nam a22006258c 4500</leader><controlfield tag="001">BV048844386</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230727 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230306s2023 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N43</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1270837710</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527414215</subfield><subfield code="9">978-3-527-41421-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527414215</subfield><subfield code="9">3-527-41421-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527414215</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1141421 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374366092</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1270837710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maccari, Attilio</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1285968913</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic perturbation methods</subfield><subfield code="b">for nonlinear differential equations in physics</subfield><subfield code="c">Attilio Maccari</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 237 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational / Numerical Methods</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational Chemistry & Molecular Modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computational Chemistry u. Molecular Modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maschinenbau</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nichtlineare u. komplexe Systeme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nichtlineares System</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear and Complex Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rechnergestützte / Numerische Verfahren im Maschinenbau</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stabilitätsanalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stabilitätstheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CHD0: Computational Chemistry u. Molecular Modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MEA0: Rechnergestützte / Numerische Verfahren im Maschinenbau</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PH32: Nichtlineare u. komplexe Systeme</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-84172-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-84173-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-84174-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41421-5/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034109743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034109743</subfield></datafield></record></collection> |
id | DE-604.BV048844386 |
illustrated | Illustrated |
index_date | 2024-07-03T21:38:46Z |
indexdate | 2024-07-10T09:47:36Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527414215 3527414215 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034109743 |
oclc_num | 1374366092 |
open_access_boolean | |
owner | DE-11 DE-703 |
owner_facet | DE-11 DE-703 |
physical | xvi, 237 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Maccari, Attilio Verfasser (DE-588)1285968913 aut Asymptotic perturbation methods for nonlinear differential equations in physics Attilio Maccari Weinheim Wiley-VCH [2023] xvi, 237 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Chemie Chemistry Computational / Numerical Methods Computational Chemistry & Molecular Modeling Computational Chemistry u. Molecular Modeling Maschinenbau Mechanical Engineering Nichtlineare u. komplexe Systeme Nichtlineares System Nonlinear and Complex Systems Physics Physik Rechnergestützte / Numerische Verfahren im Maschinenbau Stabilitätsanalyse Stabilitätstheorie CHD0: Computational Chemistry u. Molecular Modeling MEA0: Rechnergestützte / Numerische Verfahren im Maschinenbau PH32: Nichtlineare u. komplexe Systeme Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-84172-1 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-84173-8 Erscheint auch als Online-Ausgabe 978-3-527-84174-5 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41421-5/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034109743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Maccari, Attilio Asymptotic perturbation methods for nonlinear differential equations in physics |
title | Asymptotic perturbation methods for nonlinear differential equations in physics |
title_auth | Asymptotic perturbation methods for nonlinear differential equations in physics |
title_exact_search | Asymptotic perturbation methods for nonlinear differential equations in physics |
title_exact_search_txtP | Asymptotic perturbation methods for nonlinear differential equations in physics |
title_full | Asymptotic perturbation methods for nonlinear differential equations in physics Attilio Maccari |
title_fullStr | Asymptotic perturbation methods for nonlinear differential equations in physics Attilio Maccari |
title_full_unstemmed | Asymptotic perturbation methods for nonlinear differential equations in physics Attilio Maccari |
title_short | Asymptotic perturbation methods |
title_sort | asymptotic perturbation methods for nonlinear differential equations in physics |
title_sub | for nonlinear differential equations in physics |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-41421-5/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034109743&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT maccariattilio asymptoticperturbationmethodsfornonlineardifferentialequationsinphysics AT wileyvch asymptoticperturbationmethodsfornonlineardifferentialequationsinphysics |