The Mordell conjecture: a complete proof from diophantine geometry
"The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture fol...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge tracts in mathematics
226 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis kostenfrei |
Zusammenfassung: | "The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell- Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | vii, 169 Seiten Illustrationen |
ISBN: | 9781108845953 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048836196 | ||
003 | DE-604 | ||
005 | 20230412 | ||
007 | t | ||
008 | 230228s2022 xxka||| |||| 00||| eng d | ||
020 | |a 9781108845953 |c hbk |9 978-1-108-84595-3 | ||
024 | 7 | |a 10.1017/9781108991445 |2 doi | |
035 | |a (OCoLC)1309909117 | ||
035 | |a (DE-599)KXP1764692292 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-91G | ||
082 | 0 | |a 516.3/52 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 31.51 |2 bkl | ||
084 | |a MAT 144 |2 stub | ||
084 | |a 31.14 |2 bkl | ||
100 | 1 | |a Ikoma, Hideaki |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1245441612 |4 aut | |
240 | 1 | 0 | |a Mordell-faltings no teiri |
245 | 1 | 0 | |a The Mordell conjecture |b a complete proof from diophantine geometry |c Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2022 | |
300 | |a vii, 169 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics |v 226 | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell- Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole"-- | |
650 | 0 | 7 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diophantische Geometrie |0 (DE-588)4150021-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Mordell conjecture | |
653 | 0 | |a MATHEMATICS / Number Theory | |
689 | 0 | 0 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |D s |
689 | 0 | 1 | |a Diophantische Geometrie |0 (DE-588)4150021-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kawaguchi, Shu |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1245442074 |4 aut | |
700 | 1 | |a Moriwaki, Atsushi |d 1960- |e Verfasser |0 (DE-588)1068650419 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-99144-5 |
830 | 0 | |a Cambridge tracts in mathematics |v 226 |w (DE-604)BV000000001 |9 226 | |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1764692292.pdf |v 2022-07-28 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |u https://zbmath.org/?q=an%3A7455971 |y zbMATH |z kostenfrei |
999 | |a oai:aleph.bib-bvb.de:BVB01-034101699 |
Datensatz im Suchindex
_version_ | 1804184941836107776 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- |
author_GND | (DE-588)1245441612 (DE-588)1245442074 (DE-588)1068650419 |
author_facet | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- |
author_role | aut aut aut |
author_sort | Ikoma, Hideaki ca. 20./21. Jh |
author_variant | h i hi s k sk a m am |
building | Verbundindex |
bvnumber | BV048836196 |
classification_rvk | SK 240 |
classification_tum | MAT 144 |
ctrlnum | (OCoLC)1309909117 (DE-599)KXP1764692292 |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03194nam a2200541 cb4500</leader><controlfield tag="001">BV048836196</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230412 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230228s2022 xxka||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108845953</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-108-84595-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108991445</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1309909117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1764692292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 144</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ikoma, Hideaki</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1245441612</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Mordell-faltings no teiri</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Mordell conjecture</subfield><subfield code="b">a complete proof from diophantine geometry</subfield><subfield code="c">Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 169 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">226</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell- Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Geometrie</subfield><subfield code="0">(DE-588)4150021-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mordell conjecture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Number Theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Geometrie</subfield><subfield code="0">(DE-588)4150021-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawaguchi, Shu</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1245442074</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moriwaki, Atsushi</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1068650419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-99144-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">226</subfield><subfield code="w">(DE-604)BV000000001</subfield><subfield code="9">226</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1764692292.pdf</subfield><subfield code="v">2022-07-28</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://zbmath.org/?q=an%3A7455971</subfield><subfield code="y">zbMATH</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034101699</subfield></datafield></record></collection> |
id | DE-604.BV048836196 |
illustrated | Illustrated |
index_date | 2024-07-03T21:36:31Z |
indexdate | 2024-07-10T09:47:21Z |
institution | BVB |
isbn | 9781108845953 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034101699 |
oclc_num | 1309909117 |
open_access_boolean | 1 |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | vii, 169 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge tracts in mathematics |
series2 | Cambridge tracts in mathematics |
spelling | Ikoma, Hideaki ca. 20./21. Jh. Verfasser (DE-588)1245441612 aut Mordell-faltings no teiri The Mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University) Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2022 vii, 169 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Cambridge tracts in mathematics 226 Includes bibliographical references and index "The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell- Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole"-- Mordell-Vermutung (DE-588)4123793-6 gnd rswk-swf Diophantische Geometrie (DE-588)4150021-0 gnd rswk-swf Mordell conjecture MATHEMATICS / Number Theory Mordell-Vermutung (DE-588)4123793-6 s Diophantische Geometrie (DE-588)4150021-0 s DE-604 Kawaguchi, Shu ca. 20./21. Jh. Verfasser (DE-588)1245442074 aut Moriwaki, Atsushi 1960- Verfasser (DE-588)1068650419 aut Erscheint auch als Online-Ausgabe 978-1-108-99144-5 Cambridge tracts in mathematics 226 (DE-604)BV000000001 226 B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1764692292.pdf 2022-07-28 Inhaltsverzeichnis https://zbmath.org/?q=an%3A7455971 zbMATH kostenfrei |
spellingShingle | Ikoma, Hideaki ca. 20./21. Jh Kawaguchi, Shu ca. 20./21. Jh Moriwaki, Atsushi 1960- The Mordell conjecture a complete proof from diophantine geometry Cambridge tracts in mathematics Mordell-Vermutung (DE-588)4123793-6 gnd Diophantische Geometrie (DE-588)4150021-0 gnd |
subject_GND | (DE-588)4123793-6 (DE-588)4150021-0 |
title | The Mordell conjecture a complete proof from diophantine geometry |
title_alt | Mordell-faltings no teiri |
title_auth | The Mordell conjecture a complete proof from diophantine geometry |
title_exact_search | The Mordell conjecture a complete proof from diophantine geometry |
title_exact_search_txtP | The Mordell conjecture a complete proof from diophantine geometry |
title_full | The Mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University) |
title_fullStr | The Mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University) |
title_full_unstemmed | The Mordell conjecture a complete proof from diophantine geometry Hideaki Ikoma (Shitennoji University), Shu Kawaguchi (Doshisha University), Atsushi Moriwaki (Kyoto University) |
title_short | The Mordell conjecture |
title_sort | the mordell conjecture a complete proof from diophantine geometry |
title_sub | a complete proof from diophantine geometry |
topic | Mordell-Vermutung (DE-588)4123793-6 gnd Diophantische Geometrie (DE-588)4150021-0 gnd |
topic_facet | Mordell-Vermutung Diophantische Geometrie |
url | https://www.gbv.de/dms/tib-ub-hannover/1764692292.pdf https://zbmath.org/?q=an%3A7455971 |
volume_link | (DE-604)BV000000001 |
work_keys_str_mv | AT ikomahideaki mordellfaltingsnoteiri AT kawaguchishu mordellfaltingsnoteiri AT moriwakiatsushi mordellfaltingsnoteiri AT ikomahideaki themordellconjectureacompleteprooffromdiophantinegeometry AT kawaguchishu themordellconjectureacompleteprooffromdiophantinegeometry AT moriwakiatsushi themordellconjectureacompleteprooffromdiophantinegeometry |
Es ist kein Print-Exemplar vorhanden.
Volltext öffnen