Nonlinear valuation and non-Gaussian risks in finance:
Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2022
|
Schlagworte: | |
Zusammenfassung: | Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters. "Risk is often defined by the probabilities of possible future outcomes, be they the tossing of coins, the rolling of dice or the prices of assets at some future date. Uncertainty exists as the possible outcomes are many and the actual outcome that will eventuate is not known. This uncertainty is resolved when at some future time the actual outcome becomes known. The risk may be valued statistically at its expected value or in a market at the current price to be paid or received for acquiring or delivering a unit of currency on the resolution of the risk. The market value is also understood to be a discounted expected value under altered probabilities that reflect prices of events as opposed to their real probabilities. By construction the value of a risk is hence a linear function on the space of risks with the value of a combination being equal to an equivalent combination of values. As a consequence value maximization is not possible as non constant linear functions have no maximal values. Optimization becomes possible only after introducing constraints that limit the set of possibilities"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xii, 268 Seiten Diagramme |
ISBN: | 9781316518090 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048835682 | ||
003 | DE-604 | ||
005 | 20230411 | ||
007 | t | ||
008 | 230228s2022 |||| |||| 00||| eng d | ||
020 | |a 9781316518090 |c hardback |9 978-1-316-51809-0 | ||
035 | |a (OCoLC)1313524064 | ||
035 | |a (DE-599)KXP1785504088 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
050 | 0 | |a HG106 | |
084 | |a WIR 160 |2 stub | ||
100 | 1 | |a Madan, Dilip B. |d 1946- |e Verfasser |0 (DE-588)134243633 |4 aut | |
245 | 1 | 0 | |a Nonlinear valuation and non-Gaussian risks in finance |c Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2022 | |
300 | |a xii, 268 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters. | |
520 | 3 | |a "Risk is often defined by the probabilities of possible future outcomes, be they the tossing of coins, the rolling of dice or the prices of assets at some future date. Uncertainty exists as the possible outcomes are many and the actual outcome that will eventuate is not known. This uncertainty is resolved when at some future time the actual outcome becomes known. The risk may be valued statistically at its expected value or in a market at the current price to be paid or received for acquiring or delivering a unit of currency on the resolution of the risk. The market value is also understood to be a discounted expected value under altered probabilities that reflect prices of events as opposed to their real probabilities. By construction the value of a risk is hence a linear function on the space of risks with the value of a combination being equal to an equivalent combination of values. As a consequence value maximization is not possible as non constant linear functions have no maximal values. Optimization becomes possible only after introducing constraints that limit the set of possibilities"-- | |
650 | 0 | 7 | |a Finanzanalyse |0 (DE-588)4133000-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |2 gnd |9 rswk-swf |
653 | 0 | |a Financial risk management / Mathematical models | |
653 | 0 | |a Finance / Mathematical models | |
653 | 0 | |a Nonlinear theories | |
653 | 0 | |a Valuation | |
653 | 0 | |a Gaussian processes | |
653 | 0 | |a Multivariate analysis | |
689 | 0 | 0 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 1 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |D s |
689 | 0 | 2 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 3 | |a Finanzanalyse |0 (DE-588)4133000-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schoutens, Wim |d 1972- |e Verfasser |0 (DE-588)117770871X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-99387-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034101189 |
Datensatz im Suchindex
_version_ | 1804184940888195072 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Madan, Dilip B. 1946- Schoutens, Wim 1972- |
author_GND | (DE-588)134243633 (DE-588)117770871X |
author_facet | Madan, Dilip B. 1946- Schoutens, Wim 1972- |
author_role | aut aut |
author_sort | Madan, Dilip B. 1946- |
author_variant | d b m db dbm w s ws |
building | Verbundindex |
bvnumber | BV048835682 |
callnumber-first | H - Social Science |
callnumber-label | HG106 |
callnumber-raw | HG106 |
callnumber-search | HG106 |
callnumber-sort | HG 3106 |
callnumber-subject | HG - Finance |
classification_tum | WIR 160 |
ctrlnum | (OCoLC)1313524064 (DE-599)KXP1785504088 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04160nam a2200517 c 4500</leader><controlfield tag="001">BV048835682</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230411 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230228s2022 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316518090</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-316-51809-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1313524064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1785504088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG106</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 160</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Madan, Dilip B.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134243633</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear valuation and non-Gaussian risks in finance</subfield><subfield code="c">Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 268 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Risk is often defined by the probabilities of possible future outcomes, be they the tossing of coins, the rolling of dice or the prices of assets at some future date. Uncertainty exists as the possible outcomes are many and the actual outcome that will eventuate is not known. This uncertainty is resolved when at some future time the actual outcome becomes known. The risk may be valued statistically at its expected value or in a market at the current price to be paid or received for acquiring or delivering a unit of currency on the resolution of the risk. The market value is also understood to be a discounted expected value under altered probabilities that reflect prices of events as opposed to their real probabilities. By construction the value of a risk is hence a linear function on the space of risks with the value of a combination being equal to an equivalent combination of values. As a consequence value maximization is not possible as non constant linear functions have no maximal values. Optimization becomes possible only after introducing constraints that limit the set of possibilities"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzanalyse</subfield><subfield code="0">(DE-588)4133000-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Financial risk management / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Finance / Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Valuation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Gaussian processes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Finanzanalyse</subfield><subfield code="0">(DE-588)4133000-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schoutens, Wim</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117770871X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-99387-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034101189</subfield></datafield></record></collection> |
id | DE-604.BV048835682 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:36:21Z |
indexdate | 2024-07-10T09:47:20Z |
institution | BVB |
isbn | 9781316518090 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034101189 |
oclc_num | 1313524064 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xii, 268 Seiten Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Madan, Dilip B. 1946- Verfasser (DE-588)134243633 aut Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven) Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2022 xii, 268 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Univariate risk representation using arrival rates -- Estimation of univariate arrival rates from time series data -- Estimation of univariate arrival rates from option surface data -- Multivariate arrival rates associated with prespecified univariate arrival rates -- The measure-distorted valuation as a financial objective -- Representing market realities -- Measure-distorted value-maximizing hedges in practice -- Conic hedging contributions and comparisons -- Designing optimal univariate exposures -- Multivariate static hedge designs using measure-distorted valuations -- Static portfolio allocation theory for measure-distorted valuations -- Dynamic valuation via nonlinear martingales and associated backward stochastic partial integro-differential equations -- Dynamic portfolio theory -- Enterprise valuation using infinite and finite horizon valuation of terminal liquidation -- Economic acceptability -- Trading Markovian models -- Market implied measure-distortion parameters. "Risk is often defined by the probabilities of possible future outcomes, be they the tossing of coins, the rolling of dice or the prices of assets at some future date. Uncertainty exists as the possible outcomes are many and the actual outcome that will eventuate is not known. This uncertainty is resolved when at some future time the actual outcome becomes known. The risk may be valued statistically at its expected value or in a market at the current price to be paid or received for acquiring or delivering a unit of currency on the resolution of the risk. The market value is also understood to be a discounted expected value under altered probabilities that reflect prices of events as opposed to their real probabilities. By construction the value of a risk is hence a linear function on the space of risks with the value of a combination being equal to an equivalent combination of values. As a consequence value maximization is not possible as non constant linear functions have no maximal values. Optimization becomes possible only after introducing constraints that limit the set of possibilities"-- Finanzanalyse (DE-588)4133000-6 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd rswk-swf Financial risk management / Mathematical models Finance / Mathematical models Nonlinear theories Valuation Gaussian processes Multivariate analysis Mathematisches Modell (DE-588)4114528-8 s Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 s Stochastischer Prozess (DE-588)4057630-9 s Finanzanalyse (DE-588)4133000-6 s DE-604 Schoutens, Wim 1972- Verfasser (DE-588)117770871X aut Erscheint auch als Online-Ausgabe 978-1-108-99387-6 |
spellingShingle | Madan, Dilip B. 1946- Schoutens, Wim 1972- Nonlinear valuation and non-Gaussian risks in finance Finanzanalyse (DE-588)4133000-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
subject_GND | (DE-588)4133000-6 (DE-588)4114528-8 (DE-588)4057630-9 (DE-588)4276267-4 |
title | Nonlinear valuation and non-Gaussian risks in finance |
title_auth | Nonlinear valuation and non-Gaussian risks in finance |
title_exact_search | Nonlinear valuation and non-Gaussian risks in finance |
title_exact_search_txtP | Nonlinear valuation and non-Gaussian risks in finance |
title_full | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven) |
title_fullStr | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven) |
title_full_unstemmed | Nonlinear valuation and non-Gaussian risks in finance Dilip B. Madan (Robert H. Smith School of Business, University of Maryland), Wim Schoutens (KU Leuven) |
title_short | Nonlinear valuation and non-Gaussian risks in finance |
title_sort | nonlinear valuation and non gaussian risks in finance |
topic | Finanzanalyse (DE-588)4133000-6 gnd Mathematisches Modell (DE-588)4114528-8 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
topic_facet | Finanzanalyse Mathematisches Modell Stochastischer Prozess Nichtlineare Zeitreihenanalyse |
work_keys_str_mv | AT madandilipb nonlinearvaluationandnongaussianrisksinfinance AT schoutenswim nonlinearvaluationandnongaussianrisksinfinance |