Data visualization with Python and JavaScript: scrape, clean, explore, and transform your data
Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScrip...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Beijing
O'Reilly
[2023]
|
Ausgabe: | Second edition |
Online-Zugang: | FHD01 |
Zusammenfassung: | Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans |
Beschreibung: | 1 Online-Ressource (xxxvi, 529 Seiten) |
ISBN: | 9781098111823 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048833833 | ||
003 | DE-604 | ||
005 | 20230320 | ||
007 | cr|uuu---uuuuu | ||
008 | 230227s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781098111823 |9 978-1-098-11182-3 | ||
035 | |a (OCoLC)1371323763 | ||
035 | |a (DE-599)BVBBV048833833 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Dale, Kyran |e Verfasser |0 (DE-588)1112956220 |4 aut | |
245 | 1 | 0 | |a Data visualization with Python and JavaScript |b scrape, clean, explore, and transform your data |c Kryan Dale |
250 | |a Second edition | ||
264 | 1 | |a Beijing |b O'Reilly |c [2023] | |
300 | |a 1 Online-Ressource (xxxvi, 529 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas | |
505 | 8 | |a 3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments | |
505 | 8 | |a Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around | |
505 | 8 | |a Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP | |
520 | |a Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-098-11187-8 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034099375 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30285893 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184937590423552 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Dale, Kyran |
author_GND | (DE-588)1112956220 |
author_facet | Dale, Kyran |
author_role | aut |
author_sort | Dale, Kyran |
author_variant | k d kd |
building | Verbundindex |
bvnumber | BV048833833 |
collection | ZDB-30-PQE |
contents | Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas 3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP |
ctrlnum | (OCoLC)1371323763 (DE-599)BVBBV048833833 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04110nmm a2200361 c 4500</leader><controlfield tag="001">BV048833833</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230320 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230227s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098111823</subfield><subfield code="9">978-1-098-11182-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1371323763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048833833</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dale, Kyran</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1112956220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data visualization with Python and JavaScript</subfield><subfield code="b">scrape, clean, explore, and transform your data</subfield><subfield code="c">Kryan Dale</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxvi, 529 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-098-11187-8</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034099375</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=30285893</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048833833 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:35:55Z |
indexdate | 2024-07-10T09:47:16Z |
institution | BVB |
isbn | 9781098111823 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034099375 |
oclc_num | 1371323763 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (xxxvi, 529 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly |
record_format | marc |
spelling | Dale, Kyran Verfasser (DE-588)1112956220 aut Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale Second edition Beijing O'Reilly [2023] 1 Online-Ressource (xxxvi, 529 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas 3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP Chapter 2. A Language-Learning Bridge Between Python and JavaScript -- Similarities and Differences -- Interacting with the Code -- Python -- JavaScript -- Basic Bridge Work -- Style Guidelines, PEP 8, and use strict -- CamelCase Versus Underscore -- Importing Modules, Including Scripts -- JavaScript Modules -- Keeping Your Namespaces Clean -- Outputting "Hello World!" -- Simple Data Processing -- String Construction -- Significant Whitespace Versus Curly Brackets -- Comments and Doc-Strings -- Declaring Variables Using let or var -- Strings and Numbers -- Booleans Erscheint auch als Druck-Ausgabe 978-1-098-11187-8 |
spellingShingle | Dale, Kyran Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Cover -- Copyright -- Table of Contents -- Preface -- The Second Edition -- Conventions Used in This Book -- Using Code Examples -- O'Reilly Online Learning -- How to Contact Us -- Acknowledgments -- Second Edition -- Introduction -- Who This Book Is For -- Minimal Requirements to Use This Book -- Why Python and JavaScript? -- Why Not Python in the Browser? -- Why Python for Data Processing -- Python's Getting Better All the Time -- What You'll Learn -- The Choice of Libraries -- Preliminaries -- The Dataviz Toolchain -- 1. Scraping Data with Scrapy -- 2. Cleaning Data with pandas 3. Exploring Data with pandas and Matplotlib -- 4. Delivering Your Data with Flask -- 5. Transforming Data into Interactive Visualizations with Plotly and D3 -- Smaller Libraries -- Using the Book -- A Little Bit of Context -- Summary -- Recommended Books -- Part I. Basic Toolkit -- Chapter 1. Development Setup -- The Accompanying Code -- Python -- Anaconda -- Installing Extra Libraries -- Virtual Environments -- JavaScript -- Content Delivery Networks -- Installing Libraries Locally -- Databases -- Getting MongoDB Up and Running -- Easy MongoDB with Docker -- Integrated Development Environments Data Containers: dicts, objects, lists, Arrays -- Functions -- Iterating: for Loops and Functional Alternatives -- Conditionals: if, else, elif, switch -- File Input and Output -- Classes and Prototypes -- Differences in Practice -- Method Chaining -- Enumerating a List -- Tuple Unpacking -- Collections -- Underscore -- Functional Array Methods and List Comprehensions -- Map, Reduce, and Filter with Python's Lambdas -- JavaScript Closures and the Module Pattern -- A Cheat Sheet -- Summary -- Chapter 3. Reading and Writing Data with Python -- Easy Does It -- Passing Data Around Working with System Files -- CSV, TSV, and Row-Column Data Formats -- JSON -- Dealing with Dates and Times -- SQL -- Creating the Database Engine -- Defining the Database Tables -- Adding Instances with a Session -- Querying the Database -- Easier SQL with Dataset -- MongoDB -- Dealing with Dates, Times, and Complex Data -- Summary -- Chapter 4. Webdev 101 -- The Big Picture -- Single-Page Apps -- Tooling Up -- The Myth of IDEs, Frameworks, and Tools -- A Text-Editing Workhorse -- Browser with Development Tools -- Terminal or Command Prompt -- Building a Web Page -- Serving Pages with HTTP |
title | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data |
title_auth | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data |
title_exact_search | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data |
title_exact_search_txtP | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data |
title_full | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale |
title_fullStr | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale |
title_full_unstemmed | Data visualization with Python and JavaScript scrape, clean, explore, and transform your data Kryan Dale |
title_short | Data visualization with Python and JavaScript |
title_sort | data visualization with python and javascript scrape clean explore and transform your data |
title_sub | scrape, clean, explore, and transform your data |
work_keys_str_mv | AT dalekyran datavisualizationwithpythonandjavascriptscrapecleanexploreandtransformyourdata |