Passive Optical Resonators for Next-Generation Attosecond Metrology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2022
|
Schriftenreihe: | SpringerBriefs in Physics Ser
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (73 Seiten) |
ISBN: | 9783030929725 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048830810 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230224s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783030929725 |9 978-3-030-92972-5 | ||
035 | |a (ZDB-30-PQE)EBC6882545 | ||
035 | |a (ZDB-30-PAD)EBC6882545 | ||
035 | |a (ZDB-89-EBL)EBL6882545 | ||
035 | |a (OCoLC)1295242556 | ||
035 | |a (DE-599)BVBBV048830810 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 389.1 | |
100 | 1 | |a Pupeza, Ioachim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Passive Optical Resonators for Next-Generation Attosecond Metrology |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (73 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in Physics Ser | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Tracking Electron Dynamics on Their Native Time Scale-Opportunities and Challenges -- 1.2 Photoemission-Spectroscopy-Based Attosecond Metrology -- 1.2.1 Photoelectron Spectroscopy-A Brief Historical Overview -- 1.2.2 Attosecond Metrology Based on Photoelectron Spectroscopy -- 1.2.3 Femtosecond Enhancement Cavities -- 1.2.4 Experimental Implementations and Typical Parameters for Cavity-Enhanced HHG -- 1.3 Research Objectives and Structure of the Book -- 1.3.1 The Project MEGAS (MHz Attosecond Pulses for Photoelectron Spectroscopy and Microscopy) -- 1.3.2 Structure of the Book -- References -- 2 Cavity-Enhanced High-Order Harmonic Generation for Attosecond Metrology -- 2.1 Power Scaling of Femtosecond Enhancement Cavities -- 2.1.1 Large-Mode Enhancement Cavities [2] -- 2.1.2 Megawatt-Scale Average-Power Ultrashort Pulses in an Enhancement Cavity [4] -- 2.1.3 Balancing of Thermal Lenses in Enhancement Cavities with Transmissive Elements [7] -- 2.2 Femtosecond Enhancement Cavities in the Nonlinear Regime [8] -- 2.3 Geometric Output Coupling of Intracavity Generated High-Order Harmonics -- 2.3.1 Compact High-Repetition-Rate Source of Coherent 100 eV Radiation [25] -- 2.3.2 High-Harmonic Generation at 250 MHz with Photon Energies Exceeding 100 eV [6] -- 2.3.3 Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields [29] -- 2.3.4 Cavity-Enhanced Noncollinear High-Harmonic Generation [39] -- 2.4 The MEGAS Beamline -- 2.4.1 Phase-Stable, Multi-μJ Femtosecond Pulses from a Repetition-Rate Tunable Ti:Sa-Oscillator-Seeded Yb-Fiber Amplifier [41] -- 2.4.2 Cumulative Plasma Effects in Cavity-Enhanced High-Order Harmonic Generation in Gases [46] -- 2.4.3 Efficiency of Cavity-Enhanced High-Harmonic Generation with Geometric Output Coupling [40] | |
505 | 8 | |a 2.5 High-Flux Ultrafast Extreme-Ultraviolet Photoemission Spectroscopy at 18.4 MHz Pulse Repetition Rate [45] -- 2.5.1 HHG Source -- 2.5.2 Laser-Assisted Photoemission Electron Spectroscopy at 18.4 MHz-Photoelectron Statistics -- 2.5.3 Attosecond Angle-Resolved Photoemission Electron Spectroscopy (Attosecond-ARPES) at 18.4 MHz -- References -- 3 Next-Generation Enhancement Cavities for Attosecond Metrology-An Outlook -- 3.1 Passive Enhancement of Few-Cycle, Waveform-Stable Pulses -- 3.1.1 Enhancement Cavities for Zero-Offset-Frequency Pulse Trains [4] -- 3.1.2 Enhancement Cavities for Few-Cycle Pulses [5] -- 3.2 Toward Intracavity Gating for the Generation of Isolated Attosecond Pulses -- 3.2.1 Generation of Isolated Attosecond Pulses with Enhancement Cavities-A Theoretical Study [8] -- 3.2.2 Tailoring the Transverse Mode of a High-Finesse Optical Resonator with Stepped Mirrors [10] -- 3.2.3 Cavity-Enhanced Noncollinear High-Harmonic Generation [11] -- 3.2.4 Interferometric Delay Tracking for Low-Noise Mach-Zehnder-Type Scanning Measurements [12] -- 3.3 Solitons in Free-Space Femtosecond Enhancement Cavities [13] -- References | |
650 | 4 | |a Optical resonance | |
650 | 4 | |a Photonics | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Pupeza, Ioachim |t Passive Optical Resonators for Next-Generation Attosecond Metrology |d Cham : Springer International Publishing AG,c2022 |z 9783030929718 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034096388 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6882545 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184932138876928 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pupeza, Ioachim |
author_facet | Pupeza, Ioachim |
author_role | aut |
author_sort | Pupeza, Ioachim |
author_variant | i p ip |
building | Verbundindex |
bvnumber | BV048830810 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Tracking Electron Dynamics on Their Native Time Scale-Opportunities and Challenges -- 1.2 Photoemission-Spectroscopy-Based Attosecond Metrology -- 1.2.1 Photoelectron Spectroscopy-A Brief Historical Overview -- 1.2.2 Attosecond Metrology Based on Photoelectron Spectroscopy -- 1.2.3 Femtosecond Enhancement Cavities -- 1.2.4 Experimental Implementations and Typical Parameters for Cavity-Enhanced HHG -- 1.3 Research Objectives and Structure of the Book -- 1.3.1 The Project MEGAS (MHz Attosecond Pulses for Photoelectron Spectroscopy and Microscopy) -- 1.3.2 Structure of the Book -- References -- 2 Cavity-Enhanced High-Order Harmonic Generation for Attosecond Metrology -- 2.1 Power Scaling of Femtosecond Enhancement Cavities -- 2.1.1 Large-Mode Enhancement Cavities [2] -- 2.1.2 Megawatt-Scale Average-Power Ultrashort Pulses in an Enhancement Cavity [4] -- 2.1.3 Balancing of Thermal Lenses in Enhancement Cavities with Transmissive Elements [7] -- 2.2 Femtosecond Enhancement Cavities in the Nonlinear Regime [8] -- 2.3 Geometric Output Coupling of Intracavity Generated High-Order Harmonics -- 2.3.1 Compact High-Repetition-Rate Source of Coherent 100 eV Radiation [25] -- 2.3.2 High-Harmonic Generation at 250 MHz with Photon Energies Exceeding 100 eV [6] -- 2.3.3 Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields [29] -- 2.3.4 Cavity-Enhanced Noncollinear High-Harmonic Generation [39] -- 2.4 The MEGAS Beamline -- 2.4.1 Phase-Stable, Multi-μJ Femtosecond Pulses from a Repetition-Rate Tunable Ti:Sa-Oscillator-Seeded Yb-Fiber Amplifier [41] -- 2.4.2 Cumulative Plasma Effects in Cavity-Enhanced High-Order Harmonic Generation in Gases [46] -- 2.4.3 Efficiency of Cavity-Enhanced High-Harmonic Generation with Geometric Output Coupling [40] 2.5 High-Flux Ultrafast Extreme-Ultraviolet Photoemission Spectroscopy at 18.4 MHz Pulse Repetition Rate [45] -- 2.5.1 HHG Source -- 2.5.2 Laser-Assisted Photoemission Electron Spectroscopy at 18.4 MHz-Photoelectron Statistics -- 2.5.3 Attosecond Angle-Resolved Photoemission Electron Spectroscopy (Attosecond-ARPES) at 18.4 MHz -- References -- 3 Next-Generation Enhancement Cavities for Attosecond Metrology-An Outlook -- 3.1 Passive Enhancement of Few-Cycle, Waveform-Stable Pulses -- 3.1.1 Enhancement Cavities for Zero-Offset-Frequency Pulse Trains [4] -- 3.1.2 Enhancement Cavities for Few-Cycle Pulses [5] -- 3.2 Toward Intracavity Gating for the Generation of Isolated Attosecond Pulses -- 3.2.1 Generation of Isolated Attosecond Pulses with Enhancement Cavities-A Theoretical Study [8] -- 3.2.2 Tailoring the Transverse Mode of a High-Finesse Optical Resonator with Stepped Mirrors [10] -- 3.2.3 Cavity-Enhanced Noncollinear High-Harmonic Generation [11] -- 3.2.4 Interferometric Delay Tracking for Low-Noise Mach-Zehnder-Type Scanning Measurements [12] -- 3.3 Solitons in Free-Space Femtosecond Enhancement Cavities [13] -- References |
ctrlnum | (ZDB-30-PQE)EBC6882545 (ZDB-30-PAD)EBC6882545 (ZDB-89-EBL)EBL6882545 (OCoLC)1295242556 (DE-599)BVBBV048830810 |
dewey-full | 389.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 389 - Metrology and standardization |
dewey-raw | 389.1 |
dewey-search | 389.1 |
dewey-sort | 3389.1 |
dewey-tens | 380 - Commerce, communications, transportation |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04553nmm a2200421zc 4500</leader><controlfield tag="001">BV048830810</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230224s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030929725</subfield><subfield code="9">978-3-030-92972-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6882545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6882545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6882545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1295242556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048830810</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">389.1</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pupeza, Ioachim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Passive Optical Resonators for Next-Generation Attosecond Metrology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (73 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in Physics Ser</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Tracking Electron Dynamics on Their Native Time Scale-Opportunities and Challenges -- 1.2 Photoemission-Spectroscopy-Based Attosecond Metrology -- 1.2.1 Photoelectron Spectroscopy-A Brief Historical Overview -- 1.2.2 Attosecond Metrology Based on Photoelectron Spectroscopy -- 1.2.3 Femtosecond Enhancement Cavities -- 1.2.4 Experimental Implementations and Typical Parameters for Cavity-Enhanced HHG -- 1.3 Research Objectives and Structure of the Book -- 1.3.1 The Project MEGAS (MHz Attosecond Pulses for Photoelectron Spectroscopy and Microscopy) -- 1.3.2 Structure of the Book -- References -- 2 Cavity-Enhanced High-Order Harmonic Generation for Attosecond Metrology -- 2.1 Power Scaling of Femtosecond Enhancement Cavities -- 2.1.1 Large-Mode Enhancement Cavities [2] -- 2.1.2 Megawatt-Scale Average-Power Ultrashort Pulses in an Enhancement Cavity [4] -- 2.1.3 Balancing of Thermal Lenses in Enhancement Cavities with Transmissive Elements [7] -- 2.2 Femtosecond Enhancement Cavities in the Nonlinear Regime [8] -- 2.3 Geometric Output Coupling of Intracavity Generated High-Order Harmonics -- 2.3.1 Compact High-Repetition-Rate Source of Coherent 100 eV Radiation [25] -- 2.3.2 High-Harmonic Generation at 250 MHz with Photon Energies Exceeding 100 eV [6] -- 2.3.3 Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields [29] -- 2.3.4 Cavity-Enhanced Noncollinear High-Harmonic Generation [39] -- 2.4 The MEGAS Beamline -- 2.4.1 Phase-Stable, Multi-μJ Femtosecond Pulses from a Repetition-Rate Tunable Ti:Sa-Oscillator-Seeded Yb-Fiber Amplifier [41] -- 2.4.2 Cumulative Plasma Effects in Cavity-Enhanced High-Order Harmonic Generation in Gases [46] -- 2.4.3 Efficiency of Cavity-Enhanced High-Harmonic Generation with Geometric Output Coupling [40]</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 High-Flux Ultrafast Extreme-Ultraviolet Photoemission Spectroscopy at 18.4 MHz Pulse Repetition Rate [45] -- 2.5.1 HHG Source -- 2.5.2 Laser-Assisted Photoemission Electron Spectroscopy at 18.4 MHz-Photoelectron Statistics -- 2.5.3 Attosecond Angle-Resolved Photoemission Electron Spectroscopy (Attosecond-ARPES) at 18.4 MHz -- References -- 3 Next-Generation Enhancement Cavities for Attosecond Metrology-An Outlook -- 3.1 Passive Enhancement of Few-Cycle, Waveform-Stable Pulses -- 3.1.1 Enhancement Cavities for Zero-Offset-Frequency Pulse Trains [4] -- 3.1.2 Enhancement Cavities for Few-Cycle Pulses [5] -- 3.2 Toward Intracavity Gating for the Generation of Isolated Attosecond Pulses -- 3.2.1 Generation of Isolated Attosecond Pulses with Enhancement Cavities-A Theoretical Study [8] -- 3.2.2 Tailoring the Transverse Mode of a High-Finesse Optical Resonator with Stepped Mirrors [10] -- 3.2.3 Cavity-Enhanced Noncollinear High-Harmonic Generation [11] -- 3.2.4 Interferometric Delay Tracking for Low-Noise Mach-Zehnder-Type Scanning Measurements [12] -- 3.3 Solitons in Free-Space Femtosecond Enhancement Cavities [13] -- References</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Pupeza, Ioachim</subfield><subfield code="t">Passive Optical Resonators for Next-Generation Attosecond Metrology</subfield><subfield code="d">Cham : Springer International Publishing AG,c2022</subfield><subfield code="z">9783030929718</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034096388</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6882545</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048830810 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:35:28Z |
indexdate | 2024-07-10T09:47:11Z |
institution | BVB |
isbn | 9783030929725 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034096388 |
oclc_num | 1295242556 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (73 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer International Publishing AG |
record_format | marc |
series2 | SpringerBriefs in Physics Ser |
spelling | Pupeza, Ioachim Verfasser aut Passive Optical Resonators for Next-Generation Attosecond Metrology Cham Springer International Publishing AG 2022 ©2022 1 Online-Ressource (73 Seiten) txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in Physics Ser Description based on publisher supplied metadata and other sources Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Tracking Electron Dynamics on Their Native Time Scale-Opportunities and Challenges -- 1.2 Photoemission-Spectroscopy-Based Attosecond Metrology -- 1.2.1 Photoelectron Spectroscopy-A Brief Historical Overview -- 1.2.2 Attosecond Metrology Based on Photoelectron Spectroscopy -- 1.2.3 Femtosecond Enhancement Cavities -- 1.2.4 Experimental Implementations and Typical Parameters for Cavity-Enhanced HHG -- 1.3 Research Objectives and Structure of the Book -- 1.3.1 The Project MEGAS (MHz Attosecond Pulses for Photoelectron Spectroscopy and Microscopy) -- 1.3.2 Structure of the Book -- References -- 2 Cavity-Enhanced High-Order Harmonic Generation for Attosecond Metrology -- 2.1 Power Scaling of Femtosecond Enhancement Cavities -- 2.1.1 Large-Mode Enhancement Cavities [2] -- 2.1.2 Megawatt-Scale Average-Power Ultrashort Pulses in an Enhancement Cavity [4] -- 2.1.3 Balancing of Thermal Lenses in Enhancement Cavities with Transmissive Elements [7] -- 2.2 Femtosecond Enhancement Cavities in the Nonlinear Regime [8] -- 2.3 Geometric Output Coupling of Intracavity Generated High-Order Harmonics -- 2.3.1 Compact High-Repetition-Rate Source of Coherent 100 eV Radiation [25] -- 2.3.2 High-Harmonic Generation at 250 MHz with Photon Energies Exceeding 100 eV [6] -- 2.3.3 Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields [29] -- 2.3.4 Cavity-Enhanced Noncollinear High-Harmonic Generation [39] -- 2.4 The MEGAS Beamline -- 2.4.1 Phase-Stable, Multi-μJ Femtosecond Pulses from a Repetition-Rate Tunable Ti:Sa-Oscillator-Seeded Yb-Fiber Amplifier [41] -- 2.4.2 Cumulative Plasma Effects in Cavity-Enhanced High-Order Harmonic Generation in Gases [46] -- 2.4.3 Efficiency of Cavity-Enhanced High-Harmonic Generation with Geometric Output Coupling [40] 2.5 High-Flux Ultrafast Extreme-Ultraviolet Photoemission Spectroscopy at 18.4 MHz Pulse Repetition Rate [45] -- 2.5.1 HHG Source -- 2.5.2 Laser-Assisted Photoemission Electron Spectroscopy at 18.4 MHz-Photoelectron Statistics -- 2.5.3 Attosecond Angle-Resolved Photoemission Electron Spectroscopy (Attosecond-ARPES) at 18.4 MHz -- References -- 3 Next-Generation Enhancement Cavities for Attosecond Metrology-An Outlook -- 3.1 Passive Enhancement of Few-Cycle, Waveform-Stable Pulses -- 3.1.1 Enhancement Cavities for Zero-Offset-Frequency Pulse Trains [4] -- 3.1.2 Enhancement Cavities for Few-Cycle Pulses [5] -- 3.2 Toward Intracavity Gating for the Generation of Isolated Attosecond Pulses -- 3.2.1 Generation of Isolated Attosecond Pulses with Enhancement Cavities-A Theoretical Study [8] -- 3.2.2 Tailoring the Transverse Mode of a High-Finesse Optical Resonator with Stepped Mirrors [10] -- 3.2.3 Cavity-Enhanced Noncollinear High-Harmonic Generation [11] -- 3.2.4 Interferometric Delay Tracking for Low-Noise Mach-Zehnder-Type Scanning Measurements [12] -- 3.3 Solitons in Free-Space Femtosecond Enhancement Cavities [13] -- References Optical resonance Photonics Erscheint auch als Druck-Ausgabe Pupeza, Ioachim Passive Optical Resonators for Next-Generation Attosecond Metrology Cham : Springer International Publishing AG,c2022 9783030929718 |
spellingShingle | Pupeza, Ioachim Passive Optical Resonators for Next-Generation Attosecond Metrology Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Tracking Electron Dynamics on Their Native Time Scale-Opportunities and Challenges -- 1.2 Photoemission-Spectroscopy-Based Attosecond Metrology -- 1.2.1 Photoelectron Spectroscopy-A Brief Historical Overview -- 1.2.2 Attosecond Metrology Based on Photoelectron Spectroscopy -- 1.2.3 Femtosecond Enhancement Cavities -- 1.2.4 Experimental Implementations and Typical Parameters for Cavity-Enhanced HHG -- 1.3 Research Objectives and Structure of the Book -- 1.3.1 The Project MEGAS (MHz Attosecond Pulses for Photoelectron Spectroscopy and Microscopy) -- 1.3.2 Structure of the Book -- References -- 2 Cavity-Enhanced High-Order Harmonic Generation for Attosecond Metrology -- 2.1 Power Scaling of Femtosecond Enhancement Cavities -- 2.1.1 Large-Mode Enhancement Cavities [2] -- 2.1.2 Megawatt-Scale Average-Power Ultrashort Pulses in an Enhancement Cavity [4] -- 2.1.3 Balancing of Thermal Lenses in Enhancement Cavities with Transmissive Elements [7] -- 2.2 Femtosecond Enhancement Cavities in the Nonlinear Regime [8] -- 2.3 Geometric Output Coupling of Intracavity Generated High-Order Harmonics -- 2.3.1 Compact High-Repetition-Rate Source of Coherent 100 eV Radiation [25] -- 2.3.2 High-Harmonic Generation at 250 MHz with Photon Energies Exceeding 100 eV [6] -- 2.3.3 Cavity-Enhanced High-Harmonic Generation with Spatially Tailored Driving Fields [29] -- 2.3.4 Cavity-Enhanced Noncollinear High-Harmonic Generation [39] -- 2.4 The MEGAS Beamline -- 2.4.1 Phase-Stable, Multi-μJ Femtosecond Pulses from a Repetition-Rate Tunable Ti:Sa-Oscillator-Seeded Yb-Fiber Amplifier [41] -- 2.4.2 Cumulative Plasma Effects in Cavity-Enhanced High-Order Harmonic Generation in Gases [46] -- 2.4.3 Efficiency of Cavity-Enhanced High-Harmonic Generation with Geometric Output Coupling [40] 2.5 High-Flux Ultrafast Extreme-Ultraviolet Photoemission Spectroscopy at 18.4 MHz Pulse Repetition Rate [45] -- 2.5.1 HHG Source -- 2.5.2 Laser-Assisted Photoemission Electron Spectroscopy at 18.4 MHz-Photoelectron Statistics -- 2.5.3 Attosecond Angle-Resolved Photoemission Electron Spectroscopy (Attosecond-ARPES) at 18.4 MHz -- References -- 3 Next-Generation Enhancement Cavities for Attosecond Metrology-An Outlook -- 3.1 Passive Enhancement of Few-Cycle, Waveform-Stable Pulses -- 3.1.1 Enhancement Cavities for Zero-Offset-Frequency Pulse Trains [4] -- 3.1.2 Enhancement Cavities for Few-Cycle Pulses [5] -- 3.2 Toward Intracavity Gating for the Generation of Isolated Attosecond Pulses -- 3.2.1 Generation of Isolated Attosecond Pulses with Enhancement Cavities-A Theoretical Study [8] -- 3.2.2 Tailoring the Transverse Mode of a High-Finesse Optical Resonator with Stepped Mirrors [10] -- 3.2.3 Cavity-Enhanced Noncollinear High-Harmonic Generation [11] -- 3.2.4 Interferometric Delay Tracking for Low-Noise Mach-Zehnder-Type Scanning Measurements [12] -- 3.3 Solitons in Free-Space Femtosecond Enhancement Cavities [13] -- References Optical resonance Photonics |
title | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_auth | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_exact_search | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_exact_search_txtP | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_full | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_fullStr | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_full_unstemmed | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_short | Passive Optical Resonators for Next-Generation Attosecond Metrology |
title_sort | passive optical resonators for next generation attosecond metrology |
topic | Optical resonance Photonics |
topic_facet | Optical resonance Photonics |
work_keys_str_mv | AT pupezaioachim passiveopticalresonatorsfornextgenerationattosecondmetrology |