Managing AI in the Enterprise: Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress L. P.
2021
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (223 Seiten) |
ISBN: | 9781484278246 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048830721 | ||
003 | DE-604 | ||
005 | 20240424 | ||
007 | cr|uuu---uuuuu | ||
008 | 230224s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781484278246 |9 978-1-4842-7824-6 | ||
035 | |a (ZDB-30-PQE)EBC6838838 | ||
035 | |a (ZDB-30-PAD)EBC6838838 | ||
035 | |a (ZDB-89-EBL)EBL6838838 | ||
035 | |a (OCoLC)1290841098 | ||
035 | |a (DE-599)BVBBV048830721 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 658.0563 | |
100 | 1 | |a Haller, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Managing AI in the Enterprise |b Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
264 | 1 | |a Berkeley, CA |b Apress L. P. |c 2021 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (223 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why Organizations Invest in AI -- The Role of AI in Data-Driven Companies -- Calculating the Business Value of AI -- Use Case: Sales Operations Efficiency -- How and Why Up-Selling, Cross-Selling, Churn Use Cases Thrive -- Hurdles and Prerequisites for Success -- Organizational Impact -- Insights for Product Strategies -- Identifying the Business Challenge -- AI and Analytics vs. Excel -- Understanding the AI Project Deliverables and Methodology -- AI-Driven Innovation in Fashion -- Business Intelligence and AI -- Summary -- Chapter 2: Structuring and Delivering AI Projects -- The Four Layers of Innovation -- Scoping AI Projects -- Understanding the Business Goal -- Understand the Insights Category -- "Prediction Only" vs. "Prediction and Explanation" -- The Training Set Challenge -- Model Update and Usage Frequency -- Identify the Suitable AI Layer -- From Scoping Questions to Business Cases -- Understanding AI Models -- Statistics-Based Models -- Neural Networks -- Advanced Neural Network Topologies -- Developing AI Models -- The Jupyter Notebook Phenomenon -- CRISP-DM for Model Development -- Improving the Productivity of Data Scientists -- Integrating AI Models in IT Solutions -- Summary -- Chapter 3: Quality Assurance in and for AI -- AI Model Quality Metrics -- Performance Metrics for Classification -- Classification and Scoring -- Additional Performance Metrics -- QA Stages in AI Model Engineering -- Perfect but Worthless Model Metrics -- The Training, Validation, and Test Data Split -- Assessing the AI Model with the Training Dataset -- Assessing the AI Model with the Validation Dataset -- Assessing the AI Model with the Test Dataset -- Monitoring AI Models in Production -- Data Quality -- Technical Correctness | |
505 | 8 | |a Data Matches Reality? -- Reputation of Data -- QA for AI-Driven Solutions -- Summary -- Chapter 4: Ethics, Regulations, and Explainability -- AI Ethics -- The Three Areas of Ethical Risks -- Handling Ethical Dilemmas -- On Ethical AI Models -- AI Ethics Governance -- AI and Regulations -- Data Privacy Laws: The GDPR Example -- The EU's "AI Act" Proposal -- The Federal Trade Commission's Approach in the US -- Explainable AI -- Scenarios for XAI -- Local Explainability -- Global Explainability -- Summary -- Chapter 5: Building an AI Delivery Organization -- Shaping an AI Service -- IT Services Characteristics -- AI Service Types -- Characterizing AI Service Types -- Understanding Service Attributes -- Designing (for) and Measuring Service Quality -- Managing AI Project Services -- The Capabilities Triumvirate for AI Project Services -- Workload Pattern -- Budgets and Costs -- Selling Results: Data Story Telling -- Managing AI Operations Services -- The Six AI Capabilities -- Workload Pattern -- Understanding and Managing Costs Drivers -- Model Management -- Organizing an AI Organization -- Summary -- Chapter 6: AI and Data Management Architectures -- Architecting AI Environments -- Ingestion Data into AI Environments -- Storing Training Data -- Data Lakes vs. Data Warehouses -- Data Catalogs -- Model and Code Repositories -- Executing AI Models -- AI and Data Management Architectures -- AI and Classic Data Warehouse Architectures -- Self-Service Business Intelligence -- Pantheistic Intelligence -- New Data Categories -- Cloud Services and AI Architecture -- Summary -- Chapter 7: Securing and Protecting AI Environments -- The CIA Triangle -- Security-Related Responsibilities -- Mapping the Risk Landscape -- Threat Actors -- Assets in AI Organizations -- Confidentiality Threats -- Integrity Threats -- Availability Threats | |
505 | 8 | |a From Threats to Risks and Mitigation -- Securing AI-Related Systems -- System Hardening -- Governance -- Data Compartmentalization and Access Management -- Advanced Techniques for Sensitive Attributes -- Probing Detection -- Cloud-AI Risk Mitigation -- The ISO 27000 Information Security Standard -- Summary -- Chapter 8: Looking Forward -- Index | |
650 | 4 | |a Artificial intelligence-Industrial applications-Congresses | |
650 | 4 | |a Business-Data processing | |
650 | 4 | |a Machine learning | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Haller, Klaus |t Managing AI in the Enterprise |d Berkeley, CA : Apress L. P.,c2021 |z 9781484278239 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034096299 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6838838 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184931957473280 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Haller, Klaus |
author_facet | Haller, Klaus |
author_role | aut |
author_sort | Haller, Klaus |
author_variant | k h kh |
building | Verbundindex |
bvnumber | BV048830721 |
collection | ZDB-30-PQE |
contents | Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why Organizations Invest in AI -- The Role of AI in Data-Driven Companies -- Calculating the Business Value of AI -- Use Case: Sales Operations Efficiency -- How and Why Up-Selling, Cross-Selling, Churn Use Cases Thrive -- Hurdles and Prerequisites for Success -- Organizational Impact -- Insights for Product Strategies -- Identifying the Business Challenge -- AI and Analytics vs. Excel -- Understanding the AI Project Deliverables and Methodology -- AI-Driven Innovation in Fashion -- Business Intelligence and AI -- Summary -- Chapter 2: Structuring and Delivering AI Projects -- The Four Layers of Innovation -- Scoping AI Projects -- Understanding the Business Goal -- Understand the Insights Category -- "Prediction Only" vs. "Prediction and Explanation" -- The Training Set Challenge -- Model Update and Usage Frequency -- Identify the Suitable AI Layer -- From Scoping Questions to Business Cases -- Understanding AI Models -- Statistics-Based Models -- Neural Networks -- Advanced Neural Network Topologies -- Developing AI Models -- The Jupyter Notebook Phenomenon -- CRISP-DM for Model Development -- Improving the Productivity of Data Scientists -- Integrating AI Models in IT Solutions -- Summary -- Chapter 3: Quality Assurance in and for AI -- AI Model Quality Metrics -- Performance Metrics for Classification -- Classification and Scoring -- Additional Performance Metrics -- QA Stages in AI Model Engineering -- Perfect but Worthless Model Metrics -- The Training, Validation, and Test Data Split -- Assessing the AI Model with the Training Dataset -- Assessing the AI Model with the Validation Dataset -- Assessing the AI Model with the Test Dataset -- Monitoring AI Models in Production -- Data Quality -- Technical Correctness Data Matches Reality? -- Reputation of Data -- QA for AI-Driven Solutions -- Summary -- Chapter 4: Ethics, Regulations, and Explainability -- AI Ethics -- The Three Areas of Ethical Risks -- Handling Ethical Dilemmas -- On Ethical AI Models -- AI Ethics Governance -- AI and Regulations -- Data Privacy Laws: The GDPR Example -- The EU's "AI Act" Proposal -- The Federal Trade Commission's Approach in the US -- Explainable AI -- Scenarios for XAI -- Local Explainability -- Global Explainability -- Summary -- Chapter 5: Building an AI Delivery Organization -- Shaping an AI Service -- IT Services Characteristics -- AI Service Types -- Characterizing AI Service Types -- Understanding Service Attributes -- Designing (for) and Measuring Service Quality -- Managing AI Project Services -- The Capabilities Triumvirate for AI Project Services -- Workload Pattern -- Budgets and Costs -- Selling Results: Data Story Telling -- Managing AI Operations Services -- The Six AI Capabilities -- Workload Pattern -- Understanding and Managing Costs Drivers -- Model Management -- Organizing an AI Organization -- Summary -- Chapter 6: AI and Data Management Architectures -- Architecting AI Environments -- Ingestion Data into AI Environments -- Storing Training Data -- Data Lakes vs. Data Warehouses -- Data Catalogs -- Model and Code Repositories -- Executing AI Models -- AI and Data Management Architectures -- AI and Classic Data Warehouse Architectures -- Self-Service Business Intelligence -- Pantheistic Intelligence -- New Data Categories -- Cloud Services and AI Architecture -- Summary -- Chapter 7: Securing and Protecting AI Environments -- The CIA Triangle -- Security-Related Responsibilities -- Mapping the Risk Landscape -- Threat Actors -- Assets in AI Organizations -- Confidentiality Threats -- Integrity Threats -- Availability Threats From Threats to Risks and Mitigation -- Securing AI-Related Systems -- System Hardening -- Governance -- Data Compartmentalization and Access Management -- Advanced Techniques for Sensitive Attributes -- Probing Detection -- Cloud-AI Risk Mitigation -- The ISO 27000 Information Security Standard -- Summary -- Chapter 8: Looking Forward -- Index |
ctrlnum | (ZDB-30-PQE)EBC6838838 (ZDB-30-PAD)EBC6838838 (ZDB-89-EBL)EBL6838838 (OCoLC)1290841098 (DE-599)BVBBV048830721 |
dewey-full | 658.0563 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.0563 |
dewey-search | 658.0563 |
dewey-sort | 3658.0563 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05698nmm a2200433zc 4500</leader><controlfield tag="001">BV048830721</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240424 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230224s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484278246</subfield><subfield code="9">978-1-4842-7824-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6838838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6838838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6838838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1290841098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048830721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.0563</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haller, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Managing AI in the Enterprise</subfield><subfield code="b">Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress L. P.</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (223 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why Organizations Invest in AI -- The Role of AI in Data-Driven Companies -- Calculating the Business Value of AI -- Use Case: Sales Operations Efficiency -- How and Why Up-Selling, Cross-Selling, Churn Use Cases Thrive -- Hurdles and Prerequisites for Success -- Organizational Impact -- Insights for Product Strategies -- Identifying the Business Challenge -- AI and Analytics vs. Excel -- Understanding the AI Project Deliverables and Methodology -- AI-Driven Innovation in Fashion -- Business Intelligence and AI -- Summary -- Chapter 2: Structuring and Delivering AI Projects -- The Four Layers of Innovation -- Scoping AI Projects -- Understanding the Business Goal -- Understand the Insights Category -- "Prediction Only" vs. "Prediction and Explanation" -- The Training Set Challenge -- Model Update and Usage Frequency -- Identify the Suitable AI Layer -- From Scoping Questions to Business Cases -- Understanding AI Models -- Statistics-Based Models -- Neural Networks -- Advanced Neural Network Topologies -- Developing AI Models -- The Jupyter Notebook Phenomenon -- CRISP-DM for Model Development -- Improving the Productivity of Data Scientists -- Integrating AI Models in IT Solutions -- Summary -- Chapter 3: Quality Assurance in and for AI -- AI Model Quality Metrics -- Performance Metrics for Classification -- Classification and Scoring -- Additional Performance Metrics -- QA Stages in AI Model Engineering -- Perfect but Worthless Model Metrics -- The Training, Validation, and Test Data Split -- Assessing the AI Model with the Training Dataset -- Assessing the AI Model with the Validation Dataset -- Assessing the AI Model with the Test Dataset -- Monitoring AI Models in Production -- Data Quality -- Technical Correctness</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Data Matches Reality? -- Reputation of Data -- QA for AI-Driven Solutions -- Summary -- Chapter 4: Ethics, Regulations, and Explainability -- AI Ethics -- The Three Areas of Ethical Risks -- Handling Ethical Dilemmas -- On Ethical AI Models -- AI Ethics Governance -- AI and Regulations -- Data Privacy Laws: The GDPR Example -- The EU's "AI Act" Proposal -- The Federal Trade Commission's Approach in the US -- Explainable AI -- Scenarios for XAI -- Local Explainability -- Global Explainability -- Summary -- Chapter 5: Building an AI Delivery Organization -- Shaping an AI Service -- IT Services Characteristics -- AI Service Types -- Characterizing AI Service Types -- Understanding Service Attributes -- Designing (for) and Measuring Service Quality -- Managing AI Project Services -- The Capabilities Triumvirate for AI Project Services -- Workload Pattern -- Budgets and Costs -- Selling Results: Data Story Telling -- Managing AI Operations Services -- The Six AI Capabilities -- Workload Pattern -- Understanding and Managing Costs Drivers -- Model Management -- Organizing an AI Organization -- Summary -- Chapter 6: AI and Data Management Architectures -- Architecting AI Environments -- Ingestion Data into AI Environments -- Storing Training Data -- Data Lakes vs. Data Warehouses -- Data Catalogs -- Model and Code Repositories -- Executing AI Models -- AI and Data Management Architectures -- AI and Classic Data Warehouse Architectures -- Self-Service Business Intelligence -- Pantheistic Intelligence -- New Data Categories -- Cloud Services and AI Architecture -- Summary -- Chapter 7: Securing and Protecting AI Environments -- The CIA Triangle -- Security-Related Responsibilities -- Mapping the Risk Landscape -- Threat Actors -- Assets in AI Organizations -- Confidentiality Threats -- Integrity Threats -- Availability Threats</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">From Threats to Risks and Mitigation -- Securing AI-Related Systems -- System Hardening -- Governance -- Data Compartmentalization and Access Management -- Advanced Techniques for Sensitive Attributes -- Probing Detection -- Cloud-AI Risk Mitigation -- The ISO 27000 Information Security Standard -- Summary -- Chapter 8: Looking Forward -- Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence-Industrial applications-Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business-Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Haller, Klaus</subfield><subfield code="t">Managing AI in the Enterprise</subfield><subfield code="d">Berkeley, CA : Apress L. P.,c2021</subfield><subfield code="z">9781484278239</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034096299</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6838838</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048830721 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:35:28Z |
indexdate | 2024-07-10T09:47:11Z |
institution | BVB |
isbn | 9781484278246 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034096299 |
oclc_num | 1290841098 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (223 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress L. P. |
record_format | marc |
spelling | Haller, Klaus Verfasser aut Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations Berkeley, CA Apress L. P. 2021 ©2022 1 Online-Ressource (223 Seiten) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why Organizations Invest in AI -- The Role of AI in Data-Driven Companies -- Calculating the Business Value of AI -- Use Case: Sales Operations Efficiency -- How and Why Up-Selling, Cross-Selling, Churn Use Cases Thrive -- Hurdles and Prerequisites for Success -- Organizational Impact -- Insights for Product Strategies -- Identifying the Business Challenge -- AI and Analytics vs. Excel -- Understanding the AI Project Deliverables and Methodology -- AI-Driven Innovation in Fashion -- Business Intelligence and AI -- Summary -- Chapter 2: Structuring and Delivering AI Projects -- The Four Layers of Innovation -- Scoping AI Projects -- Understanding the Business Goal -- Understand the Insights Category -- "Prediction Only" vs. "Prediction and Explanation" -- The Training Set Challenge -- Model Update and Usage Frequency -- Identify the Suitable AI Layer -- From Scoping Questions to Business Cases -- Understanding AI Models -- Statistics-Based Models -- Neural Networks -- Advanced Neural Network Topologies -- Developing AI Models -- The Jupyter Notebook Phenomenon -- CRISP-DM for Model Development -- Improving the Productivity of Data Scientists -- Integrating AI Models in IT Solutions -- Summary -- Chapter 3: Quality Assurance in and for AI -- AI Model Quality Metrics -- Performance Metrics for Classification -- Classification and Scoring -- Additional Performance Metrics -- QA Stages in AI Model Engineering -- Perfect but Worthless Model Metrics -- The Training, Validation, and Test Data Split -- Assessing the AI Model with the Training Dataset -- Assessing the AI Model with the Validation Dataset -- Assessing the AI Model with the Test Dataset -- Monitoring AI Models in Production -- Data Quality -- Technical Correctness Data Matches Reality? -- Reputation of Data -- QA for AI-Driven Solutions -- Summary -- Chapter 4: Ethics, Regulations, and Explainability -- AI Ethics -- The Three Areas of Ethical Risks -- Handling Ethical Dilemmas -- On Ethical AI Models -- AI Ethics Governance -- AI and Regulations -- Data Privacy Laws: The GDPR Example -- The EU's "AI Act" Proposal -- The Federal Trade Commission's Approach in the US -- Explainable AI -- Scenarios for XAI -- Local Explainability -- Global Explainability -- Summary -- Chapter 5: Building an AI Delivery Organization -- Shaping an AI Service -- IT Services Characteristics -- AI Service Types -- Characterizing AI Service Types -- Understanding Service Attributes -- Designing (for) and Measuring Service Quality -- Managing AI Project Services -- The Capabilities Triumvirate for AI Project Services -- Workload Pattern -- Budgets and Costs -- Selling Results: Data Story Telling -- Managing AI Operations Services -- The Six AI Capabilities -- Workload Pattern -- Understanding and Managing Costs Drivers -- Model Management -- Organizing an AI Organization -- Summary -- Chapter 6: AI and Data Management Architectures -- Architecting AI Environments -- Ingestion Data into AI Environments -- Storing Training Data -- Data Lakes vs. Data Warehouses -- Data Catalogs -- Model and Code Repositories -- Executing AI Models -- AI and Data Management Architectures -- AI and Classic Data Warehouse Architectures -- Self-Service Business Intelligence -- Pantheistic Intelligence -- New Data Categories -- Cloud Services and AI Architecture -- Summary -- Chapter 7: Securing and Protecting AI Environments -- The CIA Triangle -- Security-Related Responsibilities -- Mapping the Risk Landscape -- Threat Actors -- Assets in AI Organizations -- Confidentiality Threats -- Integrity Threats -- Availability Threats From Threats to Risks and Mitigation -- Securing AI-Related Systems -- System Hardening -- Governance -- Data Compartmentalization and Access Management -- Advanced Techniques for Sensitive Attributes -- Probing Detection -- Cloud-AI Risk Mitigation -- The ISO 27000 Information Security Standard -- Summary -- Chapter 8: Looking Forward -- Index Artificial intelligence-Industrial applications-Congresses Business-Data processing Machine learning Erscheint auch als Druck-Ausgabe Haller, Klaus Managing AI in the Enterprise Berkeley, CA : Apress L. P.,c2021 9781484278239 |
spellingShingle | Haller, Klaus Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Why Organizations Invest in AI -- The Role of AI in Data-Driven Companies -- Calculating the Business Value of AI -- Use Case: Sales Operations Efficiency -- How and Why Up-Selling, Cross-Selling, Churn Use Cases Thrive -- Hurdles and Prerequisites for Success -- Organizational Impact -- Insights for Product Strategies -- Identifying the Business Challenge -- AI and Analytics vs. Excel -- Understanding the AI Project Deliverables and Methodology -- AI-Driven Innovation in Fashion -- Business Intelligence and AI -- Summary -- Chapter 2: Structuring and Delivering AI Projects -- The Four Layers of Innovation -- Scoping AI Projects -- Understanding the Business Goal -- Understand the Insights Category -- "Prediction Only" vs. "Prediction and Explanation" -- The Training Set Challenge -- Model Update and Usage Frequency -- Identify the Suitable AI Layer -- From Scoping Questions to Business Cases -- Understanding AI Models -- Statistics-Based Models -- Neural Networks -- Advanced Neural Network Topologies -- Developing AI Models -- The Jupyter Notebook Phenomenon -- CRISP-DM for Model Development -- Improving the Productivity of Data Scientists -- Integrating AI Models in IT Solutions -- Summary -- Chapter 3: Quality Assurance in and for AI -- AI Model Quality Metrics -- Performance Metrics for Classification -- Classification and Scoring -- Additional Performance Metrics -- QA Stages in AI Model Engineering -- Perfect but Worthless Model Metrics -- The Training, Validation, and Test Data Split -- Assessing the AI Model with the Training Dataset -- Assessing the AI Model with the Validation Dataset -- Assessing the AI Model with the Test Dataset -- Monitoring AI Models in Production -- Data Quality -- Technical Correctness Data Matches Reality? -- Reputation of Data -- QA for AI-Driven Solutions -- Summary -- Chapter 4: Ethics, Regulations, and Explainability -- AI Ethics -- The Three Areas of Ethical Risks -- Handling Ethical Dilemmas -- On Ethical AI Models -- AI Ethics Governance -- AI and Regulations -- Data Privacy Laws: The GDPR Example -- The EU's "AI Act" Proposal -- The Federal Trade Commission's Approach in the US -- Explainable AI -- Scenarios for XAI -- Local Explainability -- Global Explainability -- Summary -- Chapter 5: Building an AI Delivery Organization -- Shaping an AI Service -- IT Services Characteristics -- AI Service Types -- Characterizing AI Service Types -- Understanding Service Attributes -- Designing (for) and Measuring Service Quality -- Managing AI Project Services -- The Capabilities Triumvirate for AI Project Services -- Workload Pattern -- Budgets and Costs -- Selling Results: Data Story Telling -- Managing AI Operations Services -- The Six AI Capabilities -- Workload Pattern -- Understanding and Managing Costs Drivers -- Model Management -- Organizing an AI Organization -- Summary -- Chapter 6: AI and Data Management Architectures -- Architecting AI Environments -- Ingestion Data into AI Environments -- Storing Training Data -- Data Lakes vs. Data Warehouses -- Data Catalogs -- Model and Code Repositories -- Executing AI Models -- AI and Data Management Architectures -- AI and Classic Data Warehouse Architectures -- Self-Service Business Intelligence -- Pantheistic Intelligence -- New Data Categories -- Cloud Services and AI Architecture -- Summary -- Chapter 7: Securing and Protecting AI Environments -- The CIA Triangle -- Security-Related Responsibilities -- Mapping the Risk Landscape -- Threat Actors -- Assets in AI Organizations -- Confidentiality Threats -- Integrity Threats -- Availability Threats From Threats to Risks and Mitigation -- Securing AI-Related Systems -- System Hardening -- Governance -- Data Compartmentalization and Access Management -- Advanced Techniques for Sensitive Attributes -- Probing Detection -- Cloud-AI Risk Mitigation -- The ISO 27000 Information Security Standard -- Summary -- Chapter 8: Looking Forward -- Index Artificial intelligence-Industrial applications-Congresses Business-Data processing Machine learning |
title | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_auth | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_exact_search | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_exact_search_txtP | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_full | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_fullStr | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_full_unstemmed | Managing AI in the Enterprise Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
title_short | Managing AI in the Enterprise |
title_sort | managing ai in the enterprise succeeding with ai projects and mlops to build sustainable ai organizations |
title_sub | Succeeding with AI Projects and MLOps to Build Sustainable AI Organizations |
topic | Artificial intelligence-Industrial applications-Congresses Business-Data processing Machine learning |
topic_facet | Artificial intelligence-Industrial applications-Congresses Business-Data processing Machine learning |
work_keys_str_mv | AT hallerklaus managingaiintheenterprisesucceedingwithaiprojectsandmlopstobuildsustainableaiorganizations |