Bayesian optimization:
Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key i...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2023
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-863 DE-862 DE-29 Volltext |
Zusammenfassung: | Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications |
Beschreibung: | Title from publisher's bibliographic system (viewed on 25 Jan 2023) |
Beschreibung: | 1 Online-Ressource (xvi, 358 Seiten) |
ISBN: | 9781108348973 |
DOI: | 10.1017/9781108348973 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048822944 | ||
003 | DE-604 | ||
005 | 20230711 | ||
007 | cr|uuu---uuuuu | ||
008 | 230220s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781108348973 |c Online |9 978-1-108-34897-3 | ||
024 | 7 | |a 10.1017/9781108348973 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108348973 | ||
035 | |a (OCoLC)1369563024 | ||
035 | |a (DE-599)BVBBV048822944 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-863 |a DE-862 |a DE-29 |a DE-521 | ||
082 | 0 | |a 519.542 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Garnett, Roman |d ca. 20./21. Jh. |0 (DE-588)1279975792 |4 aut | |
245 | 1 | 0 | |a Bayesian optimization |c Roman Garnett, Washington University in St. Louis |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xvi, 358 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 25 Jan 2023) | ||
520 | |a Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications | ||
650 | 4 | |a Bayesian statistical decision theory | |
650 | 4 | |a Gaussian processes | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gauß-Prozess |0 (DE-588)4156111-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | 1 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | 2 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 3 | |a Gauß-Prozess |0 (DE-588)4156111-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-42578-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108348973 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034088642 | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-863 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-862 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108348973 |l DE-29 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1031806 |
---|---|
_version_ | 1812943517267263488 |
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Garnett, Roman ca. 20./21. Jh |
author_GND | (DE-588)1279975792 |
author_facet | Garnett, Roman ca. 20./21. Jh |
author_role | aut |
author_sort | Garnett, Roman ca. 20./21. Jh |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV048822944 |
classification_rvk | SK 830 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108348973 (OCoLC)1369563024 (DE-599)BVBBV048822944 |
dewey-full | 519.542 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.542 |
dewey-search | 519.542 |
dewey-sort | 3519.542 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108348973 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048822944</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230711</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230220s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108348973</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-34897-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108348973</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108348973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369563024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048822944</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.542</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garnett, Roman</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1279975792</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian optimization</subfield><subfield code="c">Roman Garnett, Washington University in St. Louis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 358 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 25 Jan 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gaussian processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-42578-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034088642</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108348973</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048822944 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:33:43Z |
indexdate | 2024-10-15T04:01:09Z |
institution | BVB |
isbn | 9781108348973 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034088642 |
oclc_num | 1369563024 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-29 DE-521 |
owner_facet | DE-12 DE-92 DE-634 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-29 DE-521 |
physical | 1 Online-Ressource (xvi, 358 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Garnett, Roman ca. 20./21. Jh Bayesian optimization Bayesian statistical decision theory Gaussian processes Machine learning Bayes-Verfahren (DE-588)4204326-8 gnd Gauß-Prozess (DE-588)4156111-9 gnd Optimierung (DE-588)4043664-0 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
subject_GND | (DE-588)4204326-8 (DE-588)4156111-9 (DE-588)4043664-0 (DE-588)4144220-9 |
title | Bayesian optimization |
title_auth | Bayesian optimization |
title_exact_search | Bayesian optimization |
title_exact_search_txtP | Bayesian optimization |
title_full | Bayesian optimization Roman Garnett, Washington University in St. Louis |
title_fullStr | Bayesian optimization Roman Garnett, Washington University in St. Louis |
title_full_unstemmed | Bayesian optimization Roman Garnett, Washington University in St. Louis |
title_short | Bayesian optimization |
title_sort | bayesian optimization |
topic | Bayesian statistical decision theory Gaussian processes Machine learning Bayes-Verfahren (DE-588)4204326-8 gnd Gauß-Prozess (DE-588)4156111-9 gnd Optimierung (DE-588)4043664-0 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
topic_facet | Bayesian statistical decision theory Gaussian processes Machine learning Bayes-Verfahren Gauß-Prozess Optimierung Bayes-Entscheidungstheorie |
url | https://doi.org/10.1017/9781108348973 |
work_keys_str_mv | AT garnettroman bayesianoptimization |