Physics of the sun: a first course
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London
CRC Press
2023
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xix, 414 Seiten Illustrationen, Diagramme 254 mm. |
ISBN: | 9780367710392 9780367720322 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048813959 | ||
003 | DE-604 | ||
005 | 20230324 | ||
007 | t | ||
008 | 230214s2023 a||| |||| 00||| eng d | ||
020 | |a 9780367710392 |9 978-0-367-71039-2 | ||
020 | |a 9780367720322 |9 978-0-367-72032-2 | ||
035 | |a (ELiSA)ELiSA-9780367710392 | ||
035 | |a (OCoLC)1372476772 | ||
035 | |a (DE-599)BVBBV048813959 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a US 6100 |0 (DE-625)146718: |2 rvk | ||
100 | 1 | |a Mullan, Dermott J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physics of the sun |b a first course |
250 | |a Second edition | ||
264 | 1 | |a Boca Raton ; London |b CRC Press |c 2023 | |
300 | |a xix, 414 Seiten |b Illustrationen, Diagramme |c 254 mm. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a 1. The Global Parameters of the Sun. 2. Radiation Flow through the Solar Atmosphere. 3. Toward a Model of the Sun: Opacity. 4. Toward a Model of the Sun: Ionization. 5. Computing a Model of the Sun: The Photosphere. 6. Convection in the Sun: Empirical Properties. 7. Computing a Model of the Sun: The Convection Zone. 8. Radiative Transfer in the Deep Interior of the Sun. 9. Computing a Mechanical Model of the Sun: The Radiative Interior. 10. Polytropes. 11. Energy Generation in the Sun. 12. Neutrinos from the Sun. 13. Oscillations in the Sun: The Observations. 14. Oscillations in the Sun: Theory. 15. The Chromosphere. 16. Magnetic Fields in the Sun. 17. The Corona. 18. The Solar Wind. ; | |
651 | 7 | |a Sonne |0 (DE-588)1236963652 |2 gnd |9 rswk-swf | |
653 | |a Astrophysik | ||
653 | |a Astronomie: Allgemeines | ||
653 | |a Weltraumforschung | ||
653 | |a Kosmologie, Urknalltheorie | ||
653 | |a Mechanik | ||
653 | |a Geologie | ||
653 | |a Physik Allgemein | ||
653 | 0 | |a solar atmosphere;radiative transfer;solar wind;magnetic fields;Dermott J. Mullan;opacity;physics | |
689 | 0 | 0 | |a Sonne |0 (DE-588)1236963652 |D g |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-003-15311-5 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079820&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034079820 |
Datensatz im Suchindex
_version_ | 1804184900764434432 |
---|---|
adam_text | Contents Preface.................................................................................................................................................. xiii Author................................................................................................................................................. xix Chapter 1 The Global Parameters of the Sun................................................................................... 1 1.1 Orbital Motion of the Earth................................................................................... 1 1.2 The Astronomical Unit (AU).................................................................................3 1.3 GMe and the Mass of the Sun.............................................................................. 6 1.4 Power Output of the Sun: The Solar Luminosity................................................ 6 1.5 The Radius of the Sun: RQ..................................................................................... 8 1.6 Acceleration due to Gravity at the Surface of the Sun....................................... 10 1.7 The Mean Mass Density of the Sun....................................................................10 1.8 Escape Speed from the Solar Surface................................................................ 11 1.9 Effective Temperature of the Sun........................................................................ 11 1.10 The Oblateness of the Sun................................................................................... 12 1.11 The Observed Rotation of the Sun’s
Surface..................................................... 13 1.12 A Characteristic Frequency for Solar Oscillations Due to Gravity................... 16 Exercises..........................................................................................................................16 References...................................................................................................................... 17 Chapter 2 Radiation Flow through the Solar Atmosphere............................................................. 19 Radiation Field in the Solar Atmosphere........................................................... 19 Empirical Properties of the Radiant Energy from the Sun............................... 24 The Radiative Transfer Equation (RTE)............................................................ 27 Optical Depth and the Concept of “the Photosphere”....................................... 29 Special Solutions of the RTE............................................................................... 29 2.5.1 S = Constant at All Optical Depths....................................................... 30 2.5.2 S = Constant in a Slab of Finite Thickness...........................................30 2.5.3 Depth-Dependent S: Polynomial Form................................................. 31 2.5.4 Depth-Dependent S: Exponential Form................................................ 32 2.6 The “Eddington-Barbier” (or “Milne-Barbier-Unsöld”) Relationship......................................................................................................... 32 2.7 Is
Limb Brightening Possible?............................................................................ 33 2.8 Is S(r) = a + br Realistic? The Gray Atmosphere.............................................. 33 2.9 How Does Temperature Vary as a Function of ť?............................................. 36 2.10 Properties of the Eddington (Milne) Relation................................................... 37 Exercises......................................................................................................................... 37 References...................................................................................................................... 38 2.1 2.2 2.3 2.4 2.5 Chapter 3 Toward a Model of the Sun: Opacity............................................................................ 39 3.1 3.2 Relationship between Optical Depth and Linear Absorption Coefficient.......................................................................................................... 39 l vo Approaches to Opacity: Atomic and Astrophysical..................................41 3.2.1 Energy Levels in Atomic Hydrogen.................................................... 42
Contents vi Atomic Physics: (i) Opacity due to Hydrogen Atoms....................................... 44 3.3.1 Absorption from the Ground State: Dependence on Wavelength..... 46 3.3.2 Absorption from Excited States: Dependence on Wavelength and T.... 48 3.4 Atomic Physics: (ii) Opacity due to Negative Hydrogen Ions........................... 50 3.5 Atomic Physics: (iii) Opacity due to Helium Atoms and Ions...........................51 3.6 Astrophysics: The Rosseland Mean Opacity....................................................... 51 3.6.1 Limit of Low Density and/or High T. Electron Scattering................... 53 3.6.2 Low T Limit........................................................................................... 54 3.6.3 Higher Density: Free-Bound Absorptions............................................ 54 3.6.4 Magnitude of the Largest Opacity.......................................................55 3.7 Power-Law Approximations to the Rosseland Mean Opacity.......................... 55 3.8 Narrow Band Opacity: Absorption Lines in the Spectrum.............................. 56 3.8.1 Characterizing the Properties of Absorption Lines............................57 3.8.2 Heights of Formation of Different Spectral Lines.............................. 60 3.8.3 Shape of an Absorption Line Profile: C-Shaped Bisectors................. 63 3.8.4 Shape of an Absorption Line: Magnetic Fields................................... 65 Exercises.......................................................................................................................... 66
References....................................................................................................................... 67 3.3 Chapter 4 Toward a Model of the Sun:Properties of Ionization................................................... 69 4.1 Statistical Weights of Free Electrons................................................................ 69 4.2 Saha Equation.......................................................................................................71 4.3 Application of the Saha Equation to Hydrogen in the Sun................................ 73 4.4 Application of the Saha Equation to Helium in the Sun................................... 75 4.5 Contours of Constant Ionization: The Two Limits.............................................76 4.6 Application of the Saha Equation to the Negative Hydrogen Ion.....................76 Exercises..........................................................................................................................77 References.......................................................................................................................78 Chapter 5 Computing a Model of the Sun: The Photosphere.........................................................79 5.1 Hydrostatic Equilibrium: The Scale Height...................................................... 79 5.2 Sharp Edge of the Sun’s Disk.............................................................................. 81 5.3 Preparing to Compute a Model of the Solar Photosphere..................................82 5.4 Computing a Model of the Photosphere:
Step by Step.......................................82 5.5 The Outcome of the Calculation........................................................................ 87 5.6 Overview of the Model of the Solar Photosphere.............................................. 88 Exercises......................................................................................................................... 90 References...................................................................................................................... 90 Chapter 6 Convection in the Sun: Empirical Properties................................................................. 91 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Nonuniform Brightness........................................................................................ 91 Granule Shapes..................................................................................................... 93 Upflow and Downflow Velocities in Solar Convection...................................... 95 Linear Sizes of Granules..................................................................................... 96 Circulation Time around a Granule.....................................................................98 Temperature Differences between Bright and Dark Gas...................................99 Energy Flux Carried by Convection...................................................................100 6.7.1 Convective Energy Flux in the Photosphere...................................... 100 6.7.2 Convective Energy Flux above the Photosphere?..............................102
Contents vii Convective Energy Flux in Gas That Lies below the Photosphere.................................................................................... 102 6.8 Onset of Convection: The Schwarzschild Criterion......................................... 104 6.9 Onset of Convection: Beyond the Schwarzschild Criterion............................. 105 6.10 Numerical Value of gad....................................................................................... 106 6.11 Alternative Expression for gad........................................................................... 107 6.12 Supergranules......................................................................................................108 Exercises........................................................................................................................ 111 References..................................................................................................................... 112 6.7.3 Chapter 7 Computing a Model of the Sun: The Convection Zone.............................................. 115 7.1 Quantifying the Physics of Convection: Vertical Acceleration........................ 115 7.2 Vertical Velocities and Length-Scales............................................................... 116 7.3 Mixing Length Theory (MLT) of Convection..................................................117 7.4 Temperature Excesses Associated with MLT Convection............................... 118 7.5 MLT Convective Flux in the Photosphere......................................................... 119 7.6 MLT
Convective Flux below the Photosphere..................................................119 7.7 Adiabatic and Nonadiabatic Processes..............................................................120 7.8 Computing a Model of the Convection Zone: Step by Step.............................122 7.9 Overview of Our Model of the Convection Zone............................................. 123 Exercises........................................................................................................................125 References.................................................................................................................... 125 Chapter 8 Radiative Transfer in the Deep Interior of the Sun..................................................... 127 8.1 Thermal Conductivity for Photons.................................................................... 127 8.2 Flux of Radiant Energy at Radius r................................................................... 129 8.3 Base of the Convection Zone..............................................................................130 8.4 Temperature Gradient in Terms of Luminosity................................................ 131 8.5 Temperature Gradient in Terms of Pressure.....................................................131 8.6 Integrating the Temperature Equation............................................................... 132 Exercise......................................................................................................................... 133
References.....................................................................................................................133 Chapter 9 Computing a Mechanical Model of the Sun: The Radiative Interior........................................................................................................................... 135 9.1 Computational Procedure: Step by Step........................................................... 135 9.2 Overview of Our Model of the Sun’s Radiative Interior................................. 137 9.3 Photons in the Sun: How Long before TheyEscape?...................................... 139 9.4 A Particular Global Property of the Solar Model............................................ 140 9.5 Does the Material in the Sun Obey the Perfect Gas Law?............................... 141 9.6 Summary of Our (Simplified) Solar Model......................................................142 Exercises........................................................................................................................ 143 References.....................................................................................................................143 Chapter 10 Polytropes....................................................................................................................... 145 10.1 Power-Law Behavior......................................................................................... 145 10.2 Polytropic Gas Spheres...................................................................................... 146
Contents viii 10.3 Lane-Emden Equation: Dimensional Form.................................................... 147 10.4 Lane-Emden Equation: Dimensionless Form.................................................148 10.5 Boundary Conditions for the Lane-Emden Equation................................... 149 10.6 Analytic Solutions of the Lane-Emden Equation......................................... 149 10.6.1 Polytrope n = 0.................................................................................... 150 10.6.2 Polytrope n = 1.................................................................................... 150 10.6.3 Polytrope n = 5.................................................................................... 150 10.7 Are Polytropes in Any Way Relevant for “Real Stars”?................................ 151 10.8 Calculating a Polytropic Model: Step by Step............................................... 152 10.9 Central Condensation of a Polytrope.............................................................. 154 Exercises...................................................................................................................... 155 References................................................................................................................... 155 Chapter 11 Energy Generation in the Sun.................................................................................... 157 The pp-i Cycle of Nuclear Reactions............................................................. 158 Reaction Rates in the
Sun.................................................................................160 Proton Collision Rates in the Sun.................................................................. 160 Conditions Required for Nuclear Reactions in the Sun.................................. 162 11.4.1 Nuclear Forces: Short-Range............................................................. 162 11.4.2 Classical Physics: The “Coulomb Gap”............................................ 164 11.4.3 Quantum Physics: Bridging the “Coulomb Gap”..............................165 11.4.4 Center of the Sun: Thermal Protons Bridge the Coulomb Gap........................................................................ 166 11.4.5 Other Stars: Bridging the Coulomb Gap........................................... 167 11.4.6 Inside the Nuclear Radius.................................................................. 167 11.5 Rates of Thermonuclear Reactions: TVvo Contributing Factors.................... 167 11.5.1 Bridging the Coulomb Gap: “Quantum Ibnneling”........................ 168 11.5.2 Post-Tunneling Processes................................................................... 169 11.5.3 Probability of pp-i Cycle in the Solar Core: Reactions (a) and (b)...............................................................171 11.6 Temperature Dependence of Thermonuclear Reaction Rates....................... 171 11.7 Rate of Reaction (c) in the pp-i cycle..............................................................173
Exercises.......................................................................................................................173 References................................................................................................................... 174 11.1 11.2 11.3 11.4 Chapter 12 Neutrinos from the Sun............................................................................................... 175 12.1 Generation and Propagation of Solar Neutrinos............................................. 175 12.2 Fluxes of pp-i Solar Neutrinos at the Earth’s Orbit....................................... 177 12.3 Neutrinos from Reactions Other than pp-i..................................................... 177 12.3.1 pp-ii and pp-III Chains..................................................................... 178 12.3.2 Other Reactions That Occur in the Sun........................................... 180 12.4 Detecting Solar Neutrinos on Earth................................................................181 12.4.1 Chlorine Detector.............................................................................. 181 12.4.2 Cherenkov Emission.......................................................................... 182 12.4.3 Gallium Detectors.............................................................................. 183 12.4.4 Heavy Water Detector........................................................................ 183 12.5 Solution of the Solar Neutrino Problem..........................................................185
Exercises...................................................................................................................... 186 References................................................................................................................... 186
Contents ix Chapter 13 Oscillations in the Sun: The Observations.................................................................. 187 13.1 Variability in Time Only................................................................................... 188 13.2 Variability in Space and Time..........................................................................191 13.3 Radial Order of a Mode.................................................................................... 194 13.4 Which p-Modes Have the Largest Amplitudes?............................................. 195 13.5 Trapped and Untrapped Modes....................................................................... 195 13.5.1 Vertically Propagating Waves in a Stratified Atmosphere............... 196 13.5.2 Simplest Case: The Isothermal Atmosphere...................................... 197 13.5.3 Critical Frequency and the “Cut-Off’ Period.................................... 199 13.5.4 Physical Basis for a Cut-Off Period................................................... 199 13.5.5 Numerical Value of the Cut-Off Period............................................. 199 13.6 Waves Propagating in a Non-Vertical Direction............................................ 200 13.7 Long-Period Oscillations in the Sun................................................................201 13.8 p-mode Frequencies and the Sunspot Cycle.................................................... 202 Exercises....................................................................................................................... 202
References.................................................................................................................... 203 Chapter 14 Oscillations in the Sun: Theory.................................................................................. 205 14.1 14.2 14.3 14.4 Small Oscillations: Deriving the Equations....................................................205 Conversion to Dimensionless Variables.......................................................... 208 Overview of the Equations............................................................................... 209 The Simplest Exercise: p-Mode Solutions for the Polytrope n = 1................ 210 14.4.1 Procedure for Computation................................................................. 211 14.4.2 Comments on the p-mode Results: Patterns in the Eigenfrequencies.................................................................... 213 14.4.3 Eigenfunctions......................................................................................214 14.5 What About g-Modes?...................................................................................... 216 14.6 Asymptotic Behavior of the Oscillation Equations........................................ 218 14.6.1 p-modes................................................................................................ 218 14.6.2 g-modes................................................................................................220 14.7 Depth of Penetration of p-modes beneath the Surface of the Sun................ 221 14.8 Why Are Certain p-Modes Excited More
than Others in the Sun?.............. 223 14.8.1 Depths Where p-Modes Are Excited................................................. 223 14.8.2 Properties of Convection at the Excitation Depth............................. 223 14.9 Using p-M(kles to Test a Solar Model............................................................ 225 14.9.1 Global Sound Propagation...................................................................225 14.9.2 Radial Profile of the Sound Speed..................................................... 225 14.9.3 The Sun’s Rotation.............................................................................. 226 14.10 r-Modes in the Sun........................................................................................... 229 Exercises....................................................................................................................... 231 References.................................................................................................................... 231 Chapter 15 The Chromosphere....................................................................................................... 233 15.1 Definition of the Chromosphere....................................................................... 234 15.2 Linear Thickness of the Chromosphere.......................................................... 236 15.3 Observing the Chromosphere on the Solar Disk............................................236 15.4 Supergranules Observed in the Ha Line......................................................... 238 15.5 The Two Principal
Components of the Chromosphere................................. 240
Contents x 15.6 Temperature Increase from Photosphere to Chromosphere: Empirical Results.................................................................................................... 240 15.7 Temperature Increase into the Chromosphere: Mechanical Work................. 242 15.8 Modeling the Chromosphere: The Input Energy Flux.................................... 243 15.9 Modeling the Chromosphere: The Energy Deposition Rate........................... 245 15.10 Modeling the Equilibrium Chromosphere: Radiating the Energy Away...... 247 15.10.1 Radiative Cooling Time-Scale........................................................... 247 15.10.2 Magnitude of the Temperature Increase: The Low Chromosphere..................................................................................... 248 15.10.3 Magnitude of the Temperature Increase: The Middle Chromosphere..................................................................................... 249 15.10.4 Magnitude of the Temperature Increase: The Upper Chromosphere..................................................................................... 251 15.11 The IRIS Satellite....................................................................................251 15.12A Variety of Wave Modes in the Chromosphere?............................................. 253 15.12.1 The “Plasma Beta” Parameter and Conversions between Wave Modes................................................................................................... 254
Exercise........................................................................................................................ 256 References.................................................................................................................... 256 Chapter 16 Magnetic Fields in the Sun.......................................................................................... 259 16.1 16.2 16.3 16.4 16.5 16.6 Sunspots............................................................................................................. 259 16.1.1 Spot Temperatures............................................................................... 260 16.1.2 Why Are Sunspots Cooler than the Rest of the Photosphere?........ 260 16.1.3 Areas of Spots and Plages................................................................... 263 16.1.4 Spot Numbers: The “11-Year” Cycle.................................................. 264 16.1.5 Spot Lifetimes..................................................................................... 267 16.1.6 Energy Deficits and Excesses..............................................................267 Chromospheric Emission.................................................................................269 Magnetic Fields: The Source of Solar Activity.............................................. 270 Measurements of Solar Magnetic Fields......................................................... 270 16.4.1 Measurement of Magnetic Fields on the Sun: Optical Data............. 271 16.4.1.1 Zeeman
Splitting................................................................ 271 16.4.1.2 Zeeman Polarization: The Longitudinal Case................. 273 16.4.1.3 Zeeman Polarization: The Transverse Case.................... 275 16.4.1.4 Babcock Magnetograph: Longitudinal Fields...................275 16.4.1.5 Vector Magnetograph......................................................... 276 16.4.2 Magnetic Field Strengths in Sunspot Umbrae.................................... 277 16.4.3 Orderly Properties of Sunspot Fields................................................. 279 16.4.4 Remote Sensing of Solar Magnetic Fields: Radio Observations.........279 16.4.5 How Are Coronal Fields Related to Fields in the Photosphere?......280 16.4.6 Direct Magnetic Measurements in Space: The Global Field of the Sun................................................................................................ 280 Empirical Properties of Global and Local Solar Magnetic Fields............... 282 Interactions between Magnetic Fields and Ionized Gas................................ 283 16.6.1 Motion of a Single Particle................................................................ 283 16.6.2 Motion of a Conducting Fluid............................................................ 286 16.6.2.1 Magnetic Pressure and Tension......................................... 286 16.6.2.2 The Equations of Magnetohydrodynamics (MHD).........287 16.6.2.3 Time-Scales for Magnetic Diffusion in the Sun.............. 289
Contents x¡ 16.7 Understanding Magnetic Structures in the Sun.............................................. 290 16.7.1 Sunspot Umbrae: Inhibition of Convection....................................... 290 16.7.2 Pores: The Smallest Sunspots............................................................ 291 16.7.3 Sunspots: The Wilson Depression......................................................291 16.7.4 Sunspots: What Determines Their Lifetimes?.................................. 292 16.7.5 Prominences........................................................................................ 293 16.7.6 Faculae................................................................................................. 293 16.7.7 Excess Chromospheric Heating: Network and Plages...................... 293 16.7.8 Magnetic Field and Gas Motion: Which Is Dominant?................... 295 16.8 Amplification of Strong Solar Magnetic Fields............................................... 296 16.9 Why Does the Sun Have a Magnetic Cycle with P « 10 Years?..................... 298 16.10 Releases of Magnetic Energy........................................................................... 300 16.11 Magnetic Helicity..............................................................................................300 Exercises........................................................................................................................302 References.................................................................................................................... 302 Chapter 17 The
Corona................................................................................................................... 307 17.1 Electron Densities.............................................................................................. 309 17.2 Electron Temperatures....................................................................................... 311 17.2.1 Optical Photons.................................................................................... 311 17.2.2 X-ray Photons....................................................................................... 313 17.3 “The” Temperature of Line Formation............................................................ 315 17.4 Emission Lines That Are Popular for Imaging the Corona............................ 316 17.4.1 SOHO/EIT............................................................................................ 316 17.4.2 SDO/AIA.............................................................................................. 317 17.4.3 Hinode/EIS........................................................................................... 318 17.5 Quantitative Estimates of the “Emission Measure” of Coronal Gas.............. 319 17.6 The Solar Cycle in X-rays..................................................................................321 17.7 The Solar Cycle in Microwave Radio Emission.............................................. 322 17.8 Ion Temperatures............................................................................................... 323 17.9 Densities and Temperatures: Quiet Sun versus
Active Regions..................... 324 17.10 Gas Pressures in the Corona............................................................................. 325 17.11 Spatial Structure in the X-ray Corona............................................................. 325 17.12 Magnetic Structures: Loops in Active Regions............................................... 326 17.13 Magnetic Structures: Coronal Holes................................................................327 17.14 Magnetic Structures: The Quiet Sun................................................................328 17.15 Why Are Quiet Coronal Temperatures of Order 1-2 MK?............................ 328 17.15.1 Thermal Conduction by Electrons..................................................... 329 17.15.2 Radiative Losses...................................................................................330 17.15.3 Combination of Radiative and Conductive Losses............................. 331 17.16 Abrupt Transition from Chromosphere to Corona.......................................... 332 17.17 Rate of Mechanical Energy Deposition in the Corona.................................... 333 17.18 What Heats the Corona?................................................................................... 334 17.18.1 Wave Heating.......................................................................................334 17.18.1.1 Acoustic Waves?................................................................335 17.18.1.2 Alfven Waves?....................................................................335 17.18.2 Non-Wave
Heating: The Magnetic Carpet......................................... 336 17.19 Solar Flares........................................................................................................ 337 17.19.1 General.............................................................................................. 337 17.19.2 How Many Solar Flares Have Been Detected?...............................339
t1¡ Contents 17.19.3 Fiare Temperatures and Densities.................................................... 341 17.19.4 Spatial Location and Extent............................................................. 343 17.19.5 Energy in Nonthermal Electrons.................................................... 343 17.19.6 Where Are Flare Electrons Accelerated?...................................... 344 17.19.7 Other Channels of Flare Energy.................................................... 345 17.19.8 Do Flares Perturb Solar Structure Significantly?......................... 346 17.19.9 Energy Densities in Flares.............................................................. 347 17.19.10 Physics of Flares (Simplified): Magnetic Reconnection in 2-D....................................................... 347 17.19.11 Physics of Flares (More Realistic): Magnetic Reconnection in 3-D....................................................... 349 17.19.12 Consequences of Magnetic Reconnection....................................................................351 17.19.13 Can Flares Be Predicted?................................................................ 352 References................................................................................................................... 352 Chapter 18 The Solar Wind........................................................................................................... 357 Global Breakdown of Hydrostatic Equilibrium in the Corona....................... 357 Localized Applicability of
HSE...................................................................... 359 Solar Wind Expansion: Parker’s Model of a “Thermal Wind”..................... 360 Conservation of Energy.................................................................................... 362 Asymptotic Speed of the Solar Wind: The Magnetic Spiral.......................... 363 Magnetic Field Effects: “High-Speed” Wind and “Slow” Wind................... 364 Observations of Solar Wind Properties.......................................................... 366 18.7.1 In situ Measurements: « 1 AU and Beyond...................................... 366 18.7.2 In situ Measurements in the Inner Wind: r 1 AU.......................... 368 18.7.3 Remote Sensing of the Solar Wind.................................................. 370 18.8 Rate of Mass Outflow from the Sun................................................................ 373 18.9 Coronal Mass Ejections (CMEs)..................................................................... 375 18.9.1 Rates of CME Occurrence................................................................ 376 18.9.2 Masses of CMEs............................................................................... 377 18.9.3 Speeds of CMEs................................................................................. 377 18.9.4 Kinetic and Potential Energies of CMEs.......................................... 378 18.9.5 Comparison and Contrast between Flares and CMEs..................... 378 18.9.6 CME Contributions to Solar Mass Loss Rates..................................380 18.9.7
CMEs and Magnetic Helicity............................................................ 380 18.10 How Far Does the Sun s Influence Extend in Space?......................................381 18.10.1 Where Does the “True” Corona End and the “True” Wind Begin?...........................................................................382 18.10.2 The Outer Edge of the Heliosphere....................................................382 Exercises......................................................................................................................385 References.................................................................................................................. 385 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Appendix A: symbols used in the text.............................................................................................389 Appendix B: instruments used to observe the Sun........................................................................ 393 Index............................................................................................................................................... ..
|
adam_txt |
Contents Preface. xiii Author. xix Chapter 1 The Global Parameters of the Sun. 1 1.1 Orbital Motion of the Earth. 1 1.2 The Astronomical Unit (AU).3 1.3 GMe and the Mass of the Sun. 6 1.4 Power Output of the Sun: The Solar Luminosity. 6 1.5 The Radius of the Sun: RQ. 8 1.6 Acceleration due to Gravity at the Surface of the Sun. 10 1.7 The Mean Mass Density of the Sun.10 1.8 Escape Speed from the Solar Surface. 11 1.9 Effective Temperature of the Sun. 11 1.10 The Oblateness of the Sun. 12 1.11 The Observed Rotation of the Sun’s
Surface. 13 1.12 A Characteristic Frequency for Solar Oscillations Due to Gravity. 16 Exercises.16 References. 17 Chapter 2 Radiation Flow through the Solar Atmosphere. 19 Radiation Field in the Solar Atmosphere. 19 Empirical Properties of the Radiant Energy from the Sun. 24 The Radiative Transfer Equation (RTE). 27 Optical Depth and the Concept of “the Photosphere”. 29 Special Solutions of the RTE. 29 2.5.1 S = Constant at All Optical Depths. 30 2.5.2 S = Constant in a Slab of Finite Thickness.30 2.5.3 Depth-Dependent S: Polynomial Form. 31 2.5.4 Depth-Dependent S: Exponential Form. 32 2.6 The “Eddington-Barbier” (or “Milne-Barbier-Unsöld”) Relationship. 32 2.7 Is
Limb Brightening Possible?. 33 2.8 Is S(r) = a + br Realistic? The Gray Atmosphere. 33 2.9 How Does Temperature Vary as a Function of ť?. 36 2.10 Properties of the Eddington (Milne) Relation. 37 Exercises. 37 References. 38 2.1 2.2 2.3 2.4 2.5 Chapter 3 Toward a Model of the Sun: Opacity. 39 3.1 3.2 Relationship between Optical Depth and Linear Absorption Coefficient. 39 l\vo Approaches to Opacity: Atomic and Astrophysical.41 3.2.1 Energy Levels in Atomic Hydrogen. 42
Contents vi Atomic Physics: (i) Opacity due to Hydrogen Atoms. 44 3.3.1 Absorption from the Ground State: Dependence on Wavelength. 46 3.3.2 Absorption from Excited States: Dependence on Wavelength and T. 48 3.4 Atomic Physics: (ii) Opacity due to Negative Hydrogen Ions. 50 3.5 Atomic Physics: (iii) Opacity due to Helium Atoms and Ions.51 3.6 Astrophysics: The Rosseland Mean Opacity. 51 3.6.1 Limit of Low Density and/or High T. Electron Scattering. 53 3.6.2 Low T Limit. 54 3.6.3 Higher Density: Free-Bound Absorptions. 54 3.6.4 Magnitude of the Largest Opacity.55 3.7 Power-Law Approximations to the Rosseland Mean Opacity. 55 3.8 Narrow Band Opacity: Absorption Lines in the Spectrum. 56 3.8.1 Characterizing the Properties of Absorption Lines.57 3.8.2 Heights of Formation of Different Spectral Lines. 60 3.8.3 Shape of an Absorption Line Profile: C-Shaped Bisectors. 63 3.8.4 Shape of an Absorption Line: Magnetic Fields. 65 Exercises. 66
References. 67 3.3 Chapter 4 Toward a Model of the Sun:Properties of Ionization. 69 4.1 Statistical Weights of Free Electrons. 69 4.2 Saha Equation.71 4.3 Application of the Saha Equation to Hydrogen in the Sun. 73 4.4 Application of the Saha Equation to Helium in the Sun. 75 4.5 Contours of Constant Ionization: The Two Limits.76 4.6 Application of the Saha Equation to the Negative Hydrogen Ion.76 Exercises.77 References.78 Chapter 5 Computing a Model of the Sun: The Photosphere.79 5.1 Hydrostatic Equilibrium: The Scale Height. 79 5.2 Sharp Edge of the Sun’s Disk. 81 5.3 Preparing to Compute a Model of the Solar Photosphere.82 5.4 Computing a Model of the Photosphere:
Step by Step.82 5.5 The Outcome of the Calculation. 87 5.6 Overview of the Model of the Solar Photosphere. 88 Exercises. 90 References. 90 Chapter 6 Convection in the Sun: Empirical Properties. 91 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Nonuniform Brightness. 91 Granule Shapes. 93 Upflow and Downflow Velocities in Solar Convection. 95 Linear Sizes of Granules. 96 Circulation Time around a Granule.98 Temperature Differences between Bright and Dark Gas.99 Energy Flux Carried by Convection.100 6.7.1 Convective Energy Flux in the Photosphere. 100 6.7.2 Convective Energy Flux above the Photosphere?.102
Contents vii Convective Energy Flux in Gas That Lies below the Photosphere. 102 6.8 Onset of Convection: The Schwarzschild Criterion. 104 6.9 Onset of Convection: Beyond the Schwarzschild Criterion. 105 6.10 Numerical Value of gad. 106 6.11 Alternative Expression for gad. 107 6.12 Supergranules.108 Exercises. 111 References. 112 6.7.3 Chapter 7 Computing a Model of the Sun: The Convection Zone. 115 7.1 Quantifying the Physics of Convection: Vertical Acceleration. 115 7.2 Vertical Velocities and Length-Scales. 116 7.3 Mixing Length Theory (MLT) of Convection.117 7.4 Temperature Excesses Associated with MLT Convection. 118 7.5 MLT Convective Flux in the Photosphere. 119 7.6 MLT
Convective Flux below the Photosphere.119 7.7 Adiabatic and Nonadiabatic Processes.120 7.8 Computing a Model of the Convection Zone: Step by Step.122 7.9 Overview of Our Model of the Convection Zone. 123 Exercises.125 References. 125 Chapter 8 Radiative Transfer in the Deep Interior of the Sun. 127 8.1 Thermal Conductivity for Photons. 127 8.2 Flux of Radiant Energy at Radius r. 129 8.3 Base of the Convection Zone.130 8.4 Temperature Gradient in Terms of Luminosity. 131 8.5 Temperature Gradient in Terms of Pressure.131 8.6 Integrating the Temperature Equation. 132 Exercise. 133
References.133 Chapter 9 Computing a Mechanical Model of the Sun: The Radiative Interior. 135 9.1 Computational Procedure: Step by Step. 135 9.2 Overview of Our Model of the Sun’s Radiative Interior. 137 9.3 Photons in the Sun: How Long before TheyEscape?. 139 9.4 A Particular Global Property of the Solar Model. 140 9.5 Does the Material in the Sun Obey the Perfect Gas Law?. 141 9.6 Summary of Our (Simplified) Solar Model.142 Exercises. 143 References.143 Chapter 10 Polytropes. 145 10.1 Power-Law Behavior. 145 10.2 Polytropic Gas Spheres. 146
Contents viii 10.3 Lane-Emden Equation: Dimensional Form. 147 10.4 Lane-Emden Equation: Dimensionless Form.148 10.5 Boundary Conditions for the Lane-Emden Equation. 149 10.6 Analytic Solutions of the Lane-Emden Equation. 149 10.6.1 Polytrope n = 0. 150 10.6.2 Polytrope n = 1. 150 10.6.3 Polytrope n = 5. 150 10.7 Are Polytropes in Any Way Relevant for “Real Stars”?. 151 10.8 Calculating a Polytropic Model: Step by Step. 152 10.9 Central Condensation of a Polytrope. 154 Exercises. 155 References. 155 Chapter 11 Energy Generation in the Sun. 157 The pp-i Cycle of Nuclear Reactions. 158 Reaction Rates in the
Sun.160 Proton Collision Rates in the Sun. 160 Conditions Required for Nuclear Reactions in the Sun. 162 11.4.1 Nuclear Forces: Short-Range. 162 11.4.2 Classical Physics: The “Coulomb Gap”. 164 11.4.3 Quantum Physics: Bridging the “Coulomb Gap”.165 11.4.4 Center of the Sun: Thermal Protons Bridge the Coulomb Gap. 166 11.4.5 Other Stars: Bridging the Coulomb Gap. 167 11.4.6 Inside the Nuclear Radius. 167 11.5 Rates of Thermonuclear Reactions: TVvo Contributing Factors. 167 11.5.1 Bridging the Coulomb Gap: “Quantum Ibnneling”. 168 11.5.2 Post-Tunneling Processes. 169 11.5.3 Probability of pp-i Cycle in the Solar Core: Reactions (a) and (b).171 11.6 Temperature Dependence of Thermonuclear Reaction Rates. 171 11.7 Rate of Reaction (c) in the pp-i cycle.173
Exercises.173 References. 174 11.1 11.2 11.3 11.4 Chapter 12 Neutrinos from the Sun. 175 12.1 Generation and Propagation of Solar Neutrinos. 175 12.2 Fluxes of pp-i Solar Neutrinos at the Earth’s Orbit. 177 12.3 Neutrinos from Reactions Other than pp-i. 177 12.3.1 pp-ii and pp-III Chains. 178 12.3.2 Other Reactions That Occur in the Sun. 180 12.4 Detecting Solar Neutrinos on Earth.181 12.4.1 Chlorine Detector. 181 12.4.2 Cherenkov Emission. 182 12.4.3 Gallium Detectors. 183 12.4.4 Heavy Water Detector. 183 12.5 Solution of the Solar Neutrino Problem.185
Exercises. 186 References. 186
Contents ix Chapter 13 Oscillations in the Sun: The Observations. 187 13.1 Variability in Time Only. 188 13.2 Variability in Space and Time.191 13.3 Radial Order of a Mode. 194 13.4 Which p-Modes Have the Largest Amplitudes?. 195 13.5 Trapped and Untrapped Modes. 195 13.5.1 Vertically Propagating Waves in a Stratified Atmosphere. 196 13.5.2 Simplest Case: The Isothermal Atmosphere. 197 13.5.3 Critical Frequency and the “Cut-Off’ Period. 199 13.5.4 Physical Basis for a Cut-Off Period. 199 13.5.5 Numerical Value of the Cut-Off Period. 199 13.6 Waves Propagating in a Non-Vertical Direction. 200 13.7 Long-Period Oscillations in the Sun.201 13.8 p-mode Frequencies and the Sunspot Cycle. 202 Exercises. 202
References. 203 Chapter 14 Oscillations in the Sun: Theory. 205 14.1 14.2 14.3 14.4 Small Oscillations: Deriving the Equations.205 Conversion to Dimensionless Variables. 208 Overview of the Equations. 209 The Simplest Exercise: p-Mode Solutions for the Polytrope n = 1. 210 14.4.1 Procedure for Computation. 211 14.4.2 Comments on the p-mode Results: Patterns in the Eigenfrequencies. 213 14.4.3 Eigenfunctions.214 14.5 What About g-Modes?. 216 14.6 Asymptotic Behavior of the Oscillation Equations. 218 14.6.1 p-modes. 218 14.6.2 g-modes.220 14.7 Depth of Penetration of p-modes beneath the Surface of the Sun. 221 14.8 Why Are Certain p-Modes Excited More
than Others in the Sun?. 223 14.8.1 Depths Where p-Modes Are Excited. 223 14.8.2 Properties of Convection at the Excitation Depth. 223 14.9 Using p-M(kles to Test a Solar Model. 225 14.9.1 Global Sound Propagation.225 14.9.2 Radial Profile of the Sound Speed. 225 14.9.3 The Sun’s Rotation. 226 14.10 r-Modes in the Sun. 229 Exercises. 231 References. 231 Chapter 15 The Chromosphere. 233 15.1 Definition of the Chromosphere. 234 15.2 Linear Thickness of the Chromosphere. 236 15.3 Observing the Chromosphere on the Solar Disk.236 15.4 Supergranules Observed in the Ha Line. 238 15.5 The Two Principal
Components of the Chromosphere. 240
Contents x 15.6 Temperature Increase from Photosphere to Chromosphere: Empirical Results. 240 15.7 Temperature Increase into the Chromosphere: Mechanical Work. 242 15.8 Modeling the Chromosphere: The Input Energy Flux. 243 15.9 Modeling the Chromosphere: The Energy Deposition Rate. 245 15.10 Modeling the Equilibrium Chromosphere: Radiating the Energy Away. 247 15.10.1 Radiative Cooling Time-Scale. 247 15.10.2 Magnitude of the Temperature Increase: The Low Chromosphere. 248 15.10.3 Magnitude of the Temperature Increase: The Middle Chromosphere. 249 15.10.4 Magnitude of the Temperature Increase: The Upper Chromosphere. 251 15.11 The IRIS Satellite.251 15.12A Variety of Wave Modes in the Chromosphere?. 253 15.12.1 The “Plasma Beta” Parameter and Conversions between Wave Modes. 254
Exercise. 256 References. 256 Chapter 16 Magnetic Fields in the Sun. 259 16.1 16.2 16.3 16.4 16.5 16.6 Sunspots. 259 16.1.1 Spot Temperatures. 260 16.1.2 Why Are Sunspots Cooler than the Rest of the Photosphere?. 260 16.1.3 Areas of Spots and Plages. 263 16.1.4 Spot Numbers: The “11-Year” Cycle. 264 16.1.5 Spot Lifetimes. 267 16.1.6 Energy Deficits and Excesses.267 Chromospheric Emission.269 Magnetic Fields: The Source of Solar Activity. 270 Measurements of Solar Magnetic Fields. 270 16.4.1 Measurement of Magnetic Fields on the Sun: Optical Data. 271 16.4.1.1 Zeeman
Splitting. 271 16.4.1.2 Zeeman Polarization: The Longitudinal Case. 273 16.4.1.3 Zeeman Polarization: The Transverse Case. 275 16.4.1.4 Babcock Magnetograph: Longitudinal Fields.275 16.4.1.5 Vector Magnetograph. 276 16.4.2 Magnetic Field Strengths in Sunspot Umbrae. 277 16.4.3 Orderly Properties of Sunspot Fields. 279 16.4.4 Remote Sensing of Solar Magnetic Fields: Radio Observations.279 16.4.5 How Are Coronal Fields Related to Fields in the Photosphere?.280 16.4.6 Direct Magnetic Measurements in Space: The Global Field of the Sun. 280 Empirical Properties of Global and Local Solar Magnetic Fields. 282 Interactions between Magnetic Fields and Ionized Gas. 283 16.6.1 Motion of a Single Particle. 283 16.6.2 Motion of a Conducting Fluid. 286 16.6.2.1 Magnetic Pressure and Tension. 286 16.6.2.2 The Equations of Magnetohydrodynamics (MHD).287 16.6.2.3 Time-Scales for Magnetic Diffusion in the Sun. 289
Contents x¡ 16.7 Understanding Magnetic Structures in the Sun. 290 16.7.1 Sunspot Umbrae: Inhibition of Convection. 290 16.7.2 Pores: The Smallest Sunspots. 291 16.7.3 Sunspots: The Wilson Depression.291 16.7.4 Sunspots: What Determines Their Lifetimes?. 292 16.7.5 Prominences. 293 16.7.6 Faculae. 293 16.7.7 Excess Chromospheric Heating: Network and Plages. 293 16.7.8 Magnetic Field and Gas Motion: Which Is Dominant?. 295 16.8 Amplification of Strong Solar Magnetic Fields. 296 16.9 Why Does the Sun Have a Magnetic Cycle with P « 10 Years?. 298 16.10 Releases of Magnetic Energy. 300 16.11 Magnetic Helicity.300 Exercises.302 References. 302 Chapter 17 The
Corona. 307 17.1 Electron Densities. 309 17.2 Electron Temperatures. 311 17.2.1 Optical Photons. 311 17.2.2 X-ray Photons. 313 17.3 “The” Temperature of Line Formation. 315 17.4 Emission Lines That Are Popular for Imaging the Corona. 316 17.4.1 SOHO/EIT. 316 17.4.2 SDO/AIA. 317 17.4.3 Hinode/EIS. 318 17.5 Quantitative Estimates of the “Emission Measure” of Coronal Gas. 319 17.6 The Solar Cycle in X-rays.321 17.7 The Solar Cycle in Microwave Radio Emission. 322 17.8 Ion Temperatures. 323 17.9 Densities and Temperatures: Quiet Sun versus
Active Regions. 324 17.10 Gas Pressures in the Corona. 325 17.11 Spatial Structure in the X-ray Corona. 325 17.12 Magnetic Structures: Loops in Active Regions. 326 17.13 Magnetic Structures: Coronal Holes.327 17.14 Magnetic Structures: The Quiet Sun.328 17.15 Why Are Quiet Coronal Temperatures of Order 1-2 MK?. 328 17.15.1 Thermal Conduction by Electrons. 329 17.15.2 Radiative Losses.330 17.15.3 Combination of Radiative and Conductive Losses. 331 17.16 Abrupt Transition from Chromosphere to Corona. 332 17.17 Rate of Mechanical Energy Deposition in the Corona. 333 17.18 What Heats the Corona?. 334 17.18.1 Wave Heating.334 17.18.1.1 Acoustic Waves?.335 17.18.1.2 Alfven Waves?.335 17.18.2 Non-Wave
Heating: The Magnetic Carpet. 336 17.19 Solar Flares. 337 17.19.1 General. 337 17.19.2 How Many Solar Flares Have Been Detected?.339
t1¡ Contents 17.19.3 Fiare Temperatures and Densities. 341 17.19.4 Spatial Location and Extent. 343 17.19.5 Energy in Nonthermal Electrons. 343 17.19.6 Where Are Flare Electrons Accelerated?. 344 17.19.7 Other Channels of Flare Energy. 345 17.19.8 Do Flares Perturb Solar Structure Significantly?. 346 17.19.9 Energy Densities in Flares. 347 17.19.10 Physics of Flares (Simplified): Magnetic Reconnection in 2-D. 347 17.19.11 Physics of Flares (More Realistic): Magnetic Reconnection in 3-D. 349 17.19.12 Consequences of Magnetic Reconnection.351 17.19.13 Can Flares Be Predicted?. 352 References. 352 Chapter 18 The Solar Wind. 357 Global Breakdown of Hydrostatic Equilibrium in the Corona. 357 Localized Applicability of
HSE. 359 Solar Wind Expansion: Parker’s Model of a “Thermal Wind”. 360 Conservation of Energy. 362 Asymptotic Speed of the Solar Wind: The Magnetic Spiral. 363 Magnetic Field Effects: “High-Speed” Wind and “Slow” Wind. 364 Observations of Solar Wind Properties. 366 18.7.1 In situ Measurements: « 1 AU and Beyond. 366 18.7.2 In situ Measurements in the Inner Wind: r 1 AU. 368 18.7.3 Remote Sensing of the Solar Wind. 370 18.8 Rate of Mass Outflow from the Sun. 373 18.9 Coronal Mass Ejections (CMEs). 375 18.9.1 Rates of CME Occurrence. 376 18.9.2 Masses of CMEs. 377 18.9.3 Speeds of CMEs. 377 18.9.4 Kinetic and Potential Energies of CMEs. 378 18.9.5 Comparison and Contrast between Flares and CMEs. 378 18.9.6 CME Contributions to Solar Mass Loss Rates.380 18.9.7
CMEs and Magnetic Helicity. 380 18.10 How Far Does the Sun's Influence Extend in Space?.381 18.10.1 Where Does the “True” Corona End and the “True” Wind Begin?.382 18.10.2 The Outer Edge of the Heliosphere.382 Exercises.385 References. 385 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Appendix A: symbols used in the text.389 Appendix B: instruments used to observe the Sun. 393 Index. . |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Mullan, Dermott J. |
author_facet | Mullan, Dermott J. |
author_role | aut |
author_sort | Mullan, Dermott J. |
author_variant | d j m dj djm |
building | Verbundindex |
bvnumber | BV048813959 |
classification_rvk | US 6100 |
contents | 1. The Global Parameters of the Sun. 2. Radiation Flow through the Solar Atmosphere. 3. Toward a Model of the Sun: Opacity. 4. Toward a Model of the Sun: Ionization. 5. Computing a Model of the Sun: The Photosphere. 6. Convection in the Sun: Empirical Properties. 7. Computing a Model of the Sun: The Convection Zone. 8. Radiative Transfer in the Deep Interior of the Sun. 9. Computing a Mechanical Model of the Sun: The Radiative Interior. 10. Polytropes. 11. Energy Generation in the Sun. 12. Neutrinos from the Sun. 13. Oscillations in the Sun: The Observations. 14. Oscillations in the Sun: Theory. 15. The Chromosphere. 16. Magnetic Fields in the Sun. 17. The Corona. 18. The Solar Wind. ; |
ctrlnum | (ELiSA)ELiSA-9780367710392 (OCoLC)1372476772 (DE-599)BVBBV048813959 |
discipline | Physik |
discipline_str_mv | Physik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02428nam a2200469 c 4500</leader><controlfield tag="001">BV048813959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230324 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230214s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367710392</subfield><subfield code="9">978-0-367-71039-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367720322</subfield><subfield code="9">978-0-367-72032-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9780367710392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1372476772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048813959</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 6100</subfield><subfield code="0">(DE-625)146718:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mullan, Dermott J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of the sun</subfield><subfield code="b">a first course</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 414 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">254 mm.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. The Global Parameters of the Sun. 2. Radiation Flow through the Solar Atmosphere. 3. Toward a Model of the Sun: Opacity. 4. Toward a Model of the Sun: Ionization. 5. Computing a Model of the Sun: The Photosphere. 6. Convection in the Sun: Empirical Properties. 7. Computing a Model of the Sun: The Convection Zone. 8. Radiative Transfer in the Deep Interior of the Sun. 9. Computing a Mechanical Model of the Sun: The Radiative Interior. 10. Polytropes. 11. Energy Generation in the Sun. 12. Neutrinos from the Sun. 13. Oscillations in the Sun: The Observations. 14. Oscillations in the Sun: Theory. 15. The Chromosphere. 16. Magnetic Fields in the Sun. 17. The Corona. 18. The Solar Wind. ;</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Sonne</subfield><subfield code="0">(DE-588)1236963652</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Astrophysik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Astronomie: Allgemeines</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weltraumforschung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kosmologie, Urknalltheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mechanik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik Allgemein</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">solar atmosphere;radiative transfer;solar wind;magnetic fields;Dermott J. Mullan;opacity;physics</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sonne</subfield><subfield code="0">(DE-588)1236963652</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-003-15311-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079820&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034079820</subfield></datafield></record></collection> |
geographic | Sonne (DE-588)1236963652 gnd |
geographic_facet | Sonne |
id | DE-604.BV048813959 |
illustrated | Illustrated |
index_date | 2024-07-03T21:31:04Z |
indexdate | 2024-07-10T09:46:41Z |
institution | BVB |
isbn | 9780367710392 9780367720322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034079820 |
oclc_num | 1372476772 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xix, 414 Seiten Illustrationen, Diagramme 254 mm. |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press |
record_format | marc |
spelling | Mullan, Dermott J. Verfasser aut Physics of the sun a first course Second edition Boca Raton ; London CRC Press 2023 xix, 414 Seiten Illustrationen, Diagramme 254 mm. txt rdacontent n rdamedia nc rdacarrier 1. The Global Parameters of the Sun. 2. Radiation Flow through the Solar Atmosphere. 3. Toward a Model of the Sun: Opacity. 4. Toward a Model of the Sun: Ionization. 5. Computing a Model of the Sun: The Photosphere. 6. Convection in the Sun: Empirical Properties. 7. Computing a Model of the Sun: The Convection Zone. 8. Radiative Transfer in the Deep Interior of the Sun. 9. Computing a Mechanical Model of the Sun: The Radiative Interior. 10. Polytropes. 11. Energy Generation in the Sun. 12. Neutrinos from the Sun. 13. Oscillations in the Sun: The Observations. 14. Oscillations in the Sun: Theory. 15. The Chromosphere. 16. Magnetic Fields in the Sun. 17. The Corona. 18. The Solar Wind. ; Sonne (DE-588)1236963652 gnd rswk-swf Astrophysik Astronomie: Allgemeines Weltraumforschung Kosmologie, Urknalltheorie Mechanik Geologie Physik Allgemein solar atmosphere;radiative transfer;solar wind;magnetic fields;Dermott J. Mullan;opacity;physics Sonne (DE-588)1236963652 g DE-604 Erscheint auch als Online-Ausgabe 978-1-003-15311-5 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079820&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mullan, Dermott J. Physics of the sun a first course 1. The Global Parameters of the Sun. 2. Radiation Flow through the Solar Atmosphere. 3. Toward a Model of the Sun: Opacity. 4. Toward a Model of the Sun: Ionization. 5. Computing a Model of the Sun: The Photosphere. 6. Convection in the Sun: Empirical Properties. 7. Computing a Model of the Sun: The Convection Zone. 8. Radiative Transfer in the Deep Interior of the Sun. 9. Computing a Mechanical Model of the Sun: The Radiative Interior. 10. Polytropes. 11. Energy Generation in the Sun. 12. Neutrinos from the Sun. 13. Oscillations in the Sun: The Observations. 14. Oscillations in the Sun: Theory. 15. The Chromosphere. 16. Magnetic Fields in the Sun. 17. The Corona. 18. The Solar Wind. ; |
subject_GND | (DE-588)1236963652 |
title | Physics of the sun a first course |
title_auth | Physics of the sun a first course |
title_exact_search | Physics of the sun a first course |
title_exact_search_txtP | Physics of the sun a first course |
title_full | Physics of the sun a first course |
title_fullStr | Physics of the sun a first course |
title_full_unstemmed | Physics of the sun a first course |
title_short | Physics of the sun |
title_sort | physics of the sun a first course |
title_sub | a first course |
topic_facet | Sonne |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079820&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mullandermottj physicsofthesunafirstcourse |