Stochastic finance: an introduction with examples
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
[2023]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | x, 252 Seiten |
ISBN: | 9781316511251 9781009048941 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048813905 | ||
003 | DE-604 | ||
005 | 20241209 | ||
007 | t| | ||
008 | 230214s2023 xx |||| 00||| eng d | ||
020 | |a 9781316511251 |q Hardback |9 978-1-316-51125-1 | ||
020 | |a 9781009048941 |q Paperback |9 978-1-009-04894-1 | ||
035 | |a (OCoLC)1376404966 | ||
035 | |a (DE-599)BVBBV048813905 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-355 |a DE-945 |a DE-11 |a DE-91G | ||
084 | |a QH 440 |0 (DE-625)141587: |2 rvk | ||
084 | |a QP 890 |0 (DE-625)141965: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a WIR 522 |2 stub | ||
100 | 1 | |a Turner, Amanda |d 1979- |e Verfasser |0 (DE-588)128646255X |4 aut | |
245 | 1 | 0 | |a Stochastic finance |b an introduction with examples |c Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University) |
264 | 1 | |a Cambridge |b Cambridge University Press |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a x, 252 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzmathematik |0 (DE-588)4017195-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Finanzmathematik |0 (DE-588)4017195-4 |D s |
689 | 0 | 1 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zeindler, Dirk |d 1980- |e Verfasser |0 (DE-588)1286462681 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079765&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034079765 |
Datensatz im Suchindex
_version_ | 1817975397347753984 |
---|---|
adam_text |
Contents Preface Acknowledgements page ix x Part I Discrete-Time Models for Finance 1 Introduction to Finance 1.1 Motivation 1.2 Financial Markets 1.2.1 Primary Markets 1.2.2 Secondary Markets 1.2.3 Payoffs 1.2.4 Payoff Diagrams 1.3 Arbitrage Opportunities and Liquid Markets 1.4 Exercises 2 Discrete Probability 2.1 Basics 2.2 Conditional Expectation 2.2.1 Conditioning on an Event В 2.2.2 Conditioning on Partitions and Random Variables 2.2.3 Properties of Conditional Expectation 2.3 Modelling the Information Available in the Future 2.3.1 Motivation 2.3.2 Definition of a σ-Algebra 2.3.3 Visualisation of σ-Algebras 2.3.4 σ-Algebras Generated by RandomVariables 2.3.5 Measurable Random Variables andConditioning 2.4 Exercises 3 Binomial or CRR Model 3.1 Model Specification 3.2 Trading Strategies 3.3 Pricing of European Contingent Claims 3.3.1 One Period (T=l) 3 3 4 4 5 7 9 9 15 17 17 22 22 26 33 39 40 41 44 47 53 59 62 62 64 69 72 v
vi Contents 3.3.2 Multi-period Case (T Arbitrary) 3.4 American Contingent Claims 3.5 Exercises 4 Finite Market Model 4.1 Model Specification and Notation 4.1.1 Model Specification 4.1.2 Trading Strategies 4.1.3 Discounted Asset Prices 4.2 First Fundamental Theorem of Asset Pricing 4.3 Second Fundamental Theorem of Asset Pricing 4.4 Pricing of Replicable European Contingent Claims 4.5 Incomplete Markets 4.6 Exercises 5 Discrete Black-Scholes Model 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Heuristic Considerations on the Stock Price Model Specification Trading Strategies and Discounted Asset Prices Risk-Neutral Measure Black-Scholes Formula Replicating Strategies Exercises 80 93 95 97 97 97 98 99 100 108 113 116 120 123 123 125 126 128 131 133 135 Part II Continuous-Time Models for Finance 6 Continuous Probability Basics 6.1.1 General Probability Spaces 6.1.2 Measures on an Arbitrary Probability Space 6.1.3 Random Variables 6.1.4 Convergence of Random Variables 6.2 Review of Stochastic Processes 6.3 Filtrationsand Conditional Expectations 6.4 Exercises 6.1 7 Brownian Motion 7.1 Definition of Brownian Motion 7.2 Properties of Sample Paths of Brownian Motion 139 139 139 140 144 147 151 156 162 164 164 167
Contents 7.3 7.4 Transformations of Brownian Motion Exercises 8 Stochastic Integration 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 The Riemann Integral The Riemann-Stieltjes Integral Quadratic Variation Construction of the Stochastic Integral Properties of the Stochastic Integral Itô’s Formula Stochastic Differential Equations Exercises 9 The Black-Scholes Model 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Model Specification Trading Strategies Arbitrage and Risk-Neutral Measure Black-Scholes Formula The Black-Scholes Greeks 9.5.1 Volatility Terminal Value Claims Exercises Appendix A Supplementary Material A.l A.2 A.3 A.4 Elementary Limit Theorems Measures on Countable Sample Spaces Discontinuities of Cadlag Functions Omitted Proofs Bibliography Symbol Index Index vii 169 174 176 176 179 183 186 195 198 205 208 210 210 211 218 225 229 231 232 236 238 238 240 241 242 248 249 251 |
adam_txt |
Contents Preface Acknowledgements page ix x Part I Discrete-Time Models for Finance 1 Introduction to Finance 1.1 Motivation 1.2 Financial Markets 1.2.1 Primary Markets 1.2.2 Secondary Markets 1.2.3 Payoffs 1.2.4 Payoff Diagrams 1.3 Arbitrage Opportunities and Liquid Markets 1.4 Exercises 2 Discrete Probability 2.1 Basics 2.2 Conditional Expectation 2.2.1 Conditioning on an Event В 2.2.2 Conditioning on Partitions and Random Variables 2.2.3 Properties of Conditional Expectation 2.3 Modelling the Information Available in the Future 2.3.1 Motivation 2.3.2 Definition of a σ-Algebra 2.3.3 Visualisation of σ-Algebras 2.3.4 σ-Algebras Generated by RandomVariables 2.3.5 Measurable Random Variables andConditioning 2.4 Exercises 3 Binomial or CRR Model 3.1 Model Specification 3.2 Trading Strategies 3.3 Pricing of European Contingent Claims 3.3.1 One Period (T=l) 3 3 4 4 5 7 9 9 15 17 17 22 22 26 33 39 40 41 44 47 53 59 62 62 64 69 72 v
vi Contents 3.3.2 Multi-period Case (T Arbitrary) 3.4 American Contingent Claims 3.5 Exercises 4 Finite Market Model 4.1 Model Specification and Notation 4.1.1 Model Specification 4.1.2 Trading Strategies 4.1.3 Discounted Asset Prices 4.2 First Fundamental Theorem of Asset Pricing 4.3 Second Fundamental Theorem of Asset Pricing 4.4 Pricing of Replicable European Contingent Claims 4.5 Incomplete Markets 4.6 Exercises 5 Discrete Black-Scholes Model 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Heuristic Considerations on the Stock Price Model Specification Trading Strategies and Discounted Asset Prices Risk-Neutral Measure Black-Scholes Formula Replicating Strategies Exercises 80 93 95 97 97 97 98 99 100 108 113 116 120 123 123 125 126 128 131 133 135 Part II Continuous-Time Models for Finance 6 Continuous Probability Basics 6.1.1 General Probability Spaces 6.1.2 Measures on an Arbitrary Probability Space 6.1.3 Random Variables 6.1.4 Convergence of Random Variables 6.2 Review of Stochastic Processes 6.3 Filtrationsand Conditional Expectations 6.4 Exercises 6.1 7 Brownian Motion 7.1 Definition of Brownian Motion 7.2 Properties of Sample Paths of Brownian Motion 139 139 139 140 144 147 151 156 162 164 164 167
Contents 7.3 7.4 Transformations of Brownian Motion Exercises 8 Stochastic Integration 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 The Riemann Integral The Riemann-Stieltjes Integral Quadratic Variation Construction of the Stochastic Integral Properties of the Stochastic Integral Itô’s Formula Stochastic Differential Equations Exercises 9 The Black-Scholes Model 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Model Specification Trading Strategies Arbitrage and Risk-Neutral Measure Black-Scholes Formula The Black-Scholes Greeks 9.5.1 Volatility Terminal Value Claims Exercises Appendix A Supplementary Material A.l A.2 A.3 A.4 Elementary Limit Theorems Measures on Countable Sample Spaces Discontinuities of Cadlag Functions Omitted Proofs Bibliography Symbol Index Index vii 169 174 176 176 179 183 186 195 198 205 208 210 210 211 218 225 229 231 232 236 238 238 240 241 242 248 249 251 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Turner, Amanda 1979- Zeindler, Dirk 1980- |
author_GND | (DE-588)128646255X (DE-588)1286462681 |
author_facet | Turner, Amanda 1979- Zeindler, Dirk 1980- |
author_role | aut aut |
author_sort | Turner, Amanda 1979- |
author_variant | a t at d z dz |
building | Verbundindex |
bvnumber | BV048813905 |
classification_rvk | QH 440 QP 890 SK 980 |
classification_tum | WIR 522 |
ctrlnum | (OCoLC)1376404966 (DE-599)BVBBV048813905 |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048813905</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241209</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">230214s2023 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316511251</subfield><subfield code="q">Hardback</subfield><subfield code="9">978-1-316-51125-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009048941</subfield><subfield code="q">Paperback</subfield><subfield code="9">978-1-009-04894-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1376404966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048813905</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 440</subfield><subfield code="0">(DE-625)141587:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 890</subfield><subfield code="0">(DE-625)141965:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 522</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Turner, Amanda</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128646255X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic finance</subfield><subfield code="b">an introduction with examples</subfield><subfield code="c">Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 252 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeindler, Dirk</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1286462681</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079765&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034079765</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV048813905 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:31:03Z |
indexdate | 2024-12-09T15:00:44Z |
institution | BVB |
isbn | 9781316511251 9781009048941 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034079765 |
oclc_num | 1376404966 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-945 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-945 DE-11 DE-91G DE-BY-TUM |
physical | x, 252 Seiten |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Turner, Amanda 1979- Verfasser (DE-588)128646255X aut Stochastic finance an introduction with examples Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University) Cambridge Cambridge University Press [2023] © 2023 x, 252 Seiten txt rdacontent n rdamedia nc rdacarrier Stochastik (DE-588)4121729-9 gnd rswk-swf Finanzmathematik (DE-588)4017195-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Finanzmathematik (DE-588)4017195-4 s Stochastik (DE-588)4121729-9 s DE-604 Zeindler, Dirk 1980- Verfasser (DE-588)1286462681 aut Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079765&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Turner, Amanda 1979- Zeindler, Dirk 1980- Stochastic finance an introduction with examples Stochastik (DE-588)4121729-9 gnd Finanzmathematik (DE-588)4017195-4 gnd |
subject_GND | (DE-588)4121729-9 (DE-588)4017195-4 (DE-588)4123623-3 |
title | Stochastic finance an introduction with examples |
title_auth | Stochastic finance an introduction with examples |
title_exact_search | Stochastic finance an introduction with examples |
title_exact_search_txtP | Stochastic finance an introduction with examples |
title_full | Stochastic finance an introduction with examples Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University) |
title_fullStr | Stochastic finance an introduction with examples Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University) |
title_full_unstemmed | Stochastic finance an introduction with examples Amanda Turner (University of Leeds), Dirk Zeindler (Lancester University) |
title_short | Stochastic finance |
title_sort | stochastic finance an introduction with examples |
title_sub | an introduction with examples |
topic | Stochastik (DE-588)4121729-9 gnd Finanzmathematik (DE-588)4017195-4 gnd |
topic_facet | Stochastik Finanzmathematik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034079765&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT turneramanda stochasticfinanceanintroductionwithexamples AT zeindlerdirk stochasticfinanceanintroductionwithexamples |