Quadratic number fields:
1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciproci...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature
[2021]
|
Schriftenreihe: | Springer undergraduate mathematics series
|
Schlagworte: | |
Zusammenfassung: | 1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciprocity -- 10 Quadratic Gauss Sums -- A Computing with Pari and Sage -- B Solutions -- Bibliography -- Name Index -- Subject Index. This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students. |
Beschreibung: | xi, 343 Seiten Illustrationen |
ISBN: | 9783030786519 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048804581 | ||
003 | DE-604 | ||
005 | 20230217 | ||
007 | t | ||
008 | 230207s2021 sz a||| |||| 00||| eng d | ||
020 | |a 9783030786519 |c print |9 978-3-030-78651-9 | ||
035 | |a (OCoLC)1286850149 | ||
035 | |a (DE-599)KXP1779823436 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-83 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a 11R21 |2 msc | ||
084 | |a 11D25 |2 msc | ||
084 | |a 11R11 |2 msc | ||
084 | |a 11D09 |2 msc | ||
100 | 1 | |a Lemmermeyer, Franz |d 1962- |0 (DE-588)114515999 |4 aut | |
245 | 1 | 0 | |a Quadratic number fields |c Franz Lemmermeyer |
264 | 1 | |a Cham |b Springer Nature |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xi, 343 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer undergraduate mathematics series | |
520 | 3 | |a 1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciprocity -- 10 Quadratic Gauss Sums -- A Computing with Pari and Sage -- B Solutions -- Bibliography -- Name Index -- Subject Index. | |
520 | 3 | |a This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students. | |
653 | 0 | |a Number theory. | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-78652-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034070647 |
Datensatz im Suchindex
_version_ | 1804184882213027840 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lemmermeyer, Franz 1962- |
author_GND | (DE-588)114515999 |
author_facet | Lemmermeyer, Franz 1962- |
author_role | aut |
author_sort | Lemmermeyer, Franz 1962- |
author_variant | f l fl |
building | Verbundindex |
bvnumber | BV048804581 |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)1286850149 (DE-599)KXP1779823436 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02727nam a2200409 c 4500</leader><controlfield tag="001">BV048804581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230207s2021 sz a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030786519</subfield><subfield code="c">print</subfield><subfield code="9">978-3-030-78651-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1286850149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1779823436</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11R21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11D25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11R11</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11D09</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lemmermeyer, Franz</subfield><subfield code="d">1962-</subfield><subfield code="0">(DE-588)114515999</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadratic number fields</subfield><subfield code="c">Franz Lemmermeyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 343 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer undergraduate mathematics series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciprocity -- 10 Quadratic Gauss Sums -- A Computing with Pari and Sage -- B Solutions -- Bibliography -- Name Index -- Subject Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-78652-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034070647</subfield></datafield></record></collection> |
id | DE-604.BV048804581 |
illustrated | Illustrated |
index_date | 2024-07-03T21:28:49Z |
indexdate | 2024-07-10T09:46:24Z |
institution | BVB |
isbn | 9783030786519 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034070647 |
oclc_num | 1286850149 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xi, 343 Seiten Illustrationen |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer Nature |
record_format | marc |
series2 | Springer undergraduate mathematics series |
spelling | Lemmermeyer, Franz 1962- (DE-588)114515999 aut Quadratic number fields Franz Lemmermeyer Cham Springer Nature [2021] © 2021 xi, 343 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Springer undergraduate mathematics series 1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciprocity -- 10 Quadratic Gauss Sums -- A Computing with Pari and Sage -- B Solutions -- Bibliography -- Name Index -- Subject Index. This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students. Number theory. Erscheint auch als Online-Ausgabe 978-3-030-78652-6 |
spellingShingle | Lemmermeyer, Franz 1962- Quadratic number fields |
title | Quadratic number fields |
title_auth | Quadratic number fields |
title_exact_search | Quadratic number fields |
title_exact_search_txtP | Quadratic number fields |
title_full | Quadratic number fields Franz Lemmermeyer |
title_fullStr | Quadratic number fields Franz Lemmermeyer |
title_full_unstemmed | Quadratic number fields Franz Lemmermeyer |
title_short | Quadratic number fields |
title_sort | quadratic number fields |
work_keys_str_mv | AT lemmermeyerfranz quadraticnumberfields |