Reduction theory and arithmetic groups:
Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | New mathematical monographs
45 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-355 Volltext |
Zusammenfassung: | Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students |
Beschreibung: | 1 Online-Ressource (xiii, 360 Seiten) |
ISBN: | 9781108937610 |
DOI: | 10.1017/9781108937610 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048800157 | ||
003 | DE-604 | ||
005 | 20240723 | ||
007 | cr|uuu---uuuuu | ||
008 | 230203s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781108937610 |c Online |9 978-1-108-93761-0 | ||
024 | 7 | |a 10.1017/9781108937610 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108937610 | ||
035 | |a (OCoLC)1369566884 | ||
035 | |a (DE-599)BVBBV048800157 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-355 | ||
082 | 0 | |a 512.7/4 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Schwermer, Joachim |d 1950- |0 (DE-588)109114957 |4 aut | |
245 | 1 | 0 | |a Reduction theory and arithmetic groups |c Joachim Schwermer |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xiii, 360 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs |v 45 | |
490 | 0 | |a 45 | |
520 | |a Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students | ||
650 | 4 | |a Arithmetic groups | |
650 | 4 | |a Number theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-108-83203-8 |
830 | 0 | |a New mathematical monographs |v 45 |w (DE-604)BV045935264 |9 45 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108937610 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034066289 | |
966 | e | |u https://doi.org/10.1017/9781108937610 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108937610 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108937610 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108937610 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf 2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1807957060114972672 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Schwermer, Joachim 1950- |
author_GND | (DE-588)109114957 |
author_facet | Schwermer, Joachim 1950- |
author_role | aut |
author_sort | Schwermer, Joachim 1950- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV048800157 |
classification_rvk | SK 180 SK 260 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108937610 (OCoLC)1369566884 (DE-599)BVBBV048800157 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108937610 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV048800157</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240723</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230203s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108937610</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-93761-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108937610</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108937610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369566884</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048800157</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwermer, Joachim</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)109114957</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reduction theory and arithmetic groups</subfield><subfield code="c">Joachim Schwermer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 360 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">45</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">45</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-108-83203-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">45</subfield><subfield code="w">(DE-604)BV045935264</subfield><subfield code="9">45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108937610</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034066289</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108937610</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108937610</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108937610</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108937610</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf 2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048800157 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:27:40Z |
indexdate | 2024-08-21T01:03:33Z |
institution | BVB |
isbn | 9781108937610 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034066289 |
oclc_num | 1369566884 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-634 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 360 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf 2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series | New mathematical monographs |
series2 | New mathematical monographs 45 |
spelling | Schwermer, Joachim 1950- (DE-588)109114957 aut Reduction theory and arithmetic groups Joachim Schwermer Cambridge Cambridge University Press 2023 1 Online-Ressource (xiii, 360 Seiten) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 45 45 Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students Arithmetic groups Number theory Erscheint auch als Druck-Ausgabe, Hardcover 978-1-108-83203-8 New mathematical monographs 45 (DE-604)BV045935264 45 https://doi.org/10.1017/9781108937610 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Schwermer, Joachim 1950- Reduction theory and arithmetic groups Arithmetic groups Number theory New mathematical monographs |
title | Reduction theory and arithmetic groups |
title_auth | Reduction theory and arithmetic groups |
title_exact_search | Reduction theory and arithmetic groups |
title_exact_search_txtP | Reduction theory and arithmetic groups |
title_full | Reduction theory and arithmetic groups Joachim Schwermer |
title_fullStr | Reduction theory and arithmetic groups Joachim Schwermer |
title_full_unstemmed | Reduction theory and arithmetic groups Joachim Schwermer |
title_short | Reduction theory and arithmetic groups |
title_sort | reduction theory and arithmetic groups |
topic | Arithmetic groups Number theory |
topic_facet | Arithmetic groups Number theory |
url | https://doi.org/10.1017/9781108937610 |
volume_link | (DE-604)BV045935264 |
work_keys_str_mv | AT schwermerjoachim reductiontheoryandarithmeticgroups |