IoT, machine learning and blockchain technologies for renewable energy and modern hybrid power systems:

This edited book comprises chapters that describe the IoT, machine learning, and blockchain technologies for renewable energy and modern hybrid power systems with simulation examples and case studies.After reading this book, users will understand recent technologies such as IoT, machine learning tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Sharmeela, C. (HerausgeberIn), Sanjeevikumar, Padmanaban 1978- (HerausgeberIn), Sivaraman, P. (HerausgeberIn), Joseph, Meera (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Gistrup, Denmark River Publishers 2023
New York ; London Routledge
Schriftenreihe:River Publishers series in information science and technology
Schlagworte:
Zusammenfassung:This edited book comprises chapters that describe the IoT, machine learning, and blockchain technologies for renewable energy and modern hybrid power systems with simulation examples and case studies.After reading this book, users will understand recent technologies such as IoT, machine learning techniques, and blockchain technologies and the application of these technologies to renewable energy resources and modern hybrid power systems through simulation examples and case studies
Beschreibung:1. Introduction to IoT 2. IoT and its Requirements for Renewable Energy Resources 3. Power Quality Monitoring of Low Voltage Distribution System Toward Smart Distribution Grid Through IoT 4. Health Monitoring of a Transformer in a Smart Distribution System using IoT 5. Introduction To Machine Learning Techniques 6. Machine Learning Techniques for Renewable Energy Resources 7. Application of Optimization Technique in Modern Hybrid Power Systems 8. Application of Machine Learning Techniques in Modern Hybrid Power Systems – A Case Study 9. Establishing a Realistic Shunt Capacitor Bank with a Power System using PSO/ACCS 10. Introduction to Blockchain Technologies 11. Blockchain Technologies for Renewable Energy Resources with Case Study: SHA–256, 384, and 512
Beschreibung:xxx, 274 Seiten Illustrationen, Diagramme 721 grams
ISBN:9788770227247

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!