Partial compactification of monopoles and metric asymptotics:

"We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kottke, Chris (VerfasserIn), Singer, Michael F. 1950- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI American Mathematical Society 2022
Schriftenreihe:Memoirs of the American Mathematical Society Volume 280, Number 1383 (sixth of 8 numbers)
Schlagworte:
Zusammenfassung:"We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete asymptotic expansion up to the boundary, the leading term of which generalizes the asymptotic metric discovered by Bielawski, Gibbons and Manton when each lower charge is 1"--
Beschreibung:Includes bibliographical references
Beschreibung:vii, 110 Seiten Illustrationen
ISBN:9781470455415

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!