Partial compactification of monopoles and metric asymptotics:
"We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Mathematical Society
2022
|
Schriftenreihe: | Memoirs of the American Mathematical Society
Volume 280, Number 1383 (sixth of 8 numbers) |
Schlagworte: | |
Zusammenfassung: | "We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete asymptotic expansion up to the boundary, the leading term of which generalizes the asymptotic metric discovered by Bielawski, Gibbons and Manton when each lower charge is 1"-- |
Beschreibung: | Includes bibliographical references |
Beschreibung: | vii, 110 Seiten Illustrationen |
ISBN: | 9781470455415 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048684564 | ||
003 | DE-604 | ||
005 | 20230921 | ||
007 | t | ||
008 | 230131s2022 xxua||| |||| 00||| eng d | ||
020 | |a 9781470455415 |c paperback |9 978-1-4704-5541-5 | ||
024 | 7 | |a 10.1090/memo/1383 |2 doi | |
035 | |a (OCoLC)1365620723 | ||
035 | |a (DE-599)KXP1832134164 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-29T |a DE-83 |a DE-355 |a DE-11 | ||
082 | 0 | |a 516.3/62 |2 23 | |
084 | |a 53C07 |2 msc | ||
084 | |a 58J99 |2 msc | ||
084 | |a 81T13 |2 msc | ||
100 | 1 | |a Kottke, Chris |0 (DE-588)1299394507 |4 aut | |
245 | 1 | 0 | |a Partial compactification of monopoles and metric asymptotics |c Chris Kottke ; Michael Singer |
264 | 1 | |a Providence, RI |b American Mathematical Society |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a vii, 110 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v Volume 280, Number 1383 (sixth of 8 numbers) | |
500 | |a Includes bibliographical references | ||
520 | 3 | |a "We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete asymptotic expansion up to the boundary, the leading term of which generalizes the asymptotic metric discovered by Bielawski, Gibbons and Manton when each lower charge is 1"-- | |
653 | 0 | |a Vector bundles | |
653 | 0 | |a Global differential geometry | |
653 | 0 | |a Global analysis (Mathematics) | |
653 | 0 | |a Quantum field theory | |
653 | 0 | |a Differential geometry -- Global differential geometry -- Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills) | |
653 | 0 | |a Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- None of the above, but in this section | |
653 | 0 | |a Quantum theory -- Quantum field theory; related classical field theories -- Yang-Mills and other gauge theories | |
700 | 1 | |a Singer, Michael F. |d 1950- |0 (DE-588)115533265 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |z 9781470472832 |
830 | 0 | |a Memoirs of the American Mathematical Society |v Volume 280, Number 1383 (sixth of 8 numbers) |w (DE-604)BV008000141 |9 1383 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034058871 |
Datensatz im Suchindex
_version_ | 1804184859749384192 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kottke, Chris Singer, Michael F. 1950- |
author_GND | (DE-588)1299394507 (DE-588)115533265 |
author_facet | Kottke, Chris Singer, Michael F. 1950- |
author_role | aut aut |
author_sort | Kottke, Chris |
author_variant | c k ck m f s mf mfs |
building | Verbundindex |
bvnumber | BV048684564 |
ctrlnum | (OCoLC)1365620723 (DE-599)KXP1832134164 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02512nam a2200493 cb4500</leader><controlfield tag="001">BV048684564</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230921 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230131s2022 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470455415</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-4704-5541-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/memo/1383</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1365620723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1832134164</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58J99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81T13</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kottke, Chris</subfield><subfield code="0">(DE-588)1299394507</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial compactification of monopoles and metric asymptotics</subfield><subfield code="c">Chris Kottke ; Michael Singer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">vii, 110 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">Volume 280, Number 1383 (sixth of 8 numbers)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete asymptotic expansion up to the boundary, the leading term of which generalizes the asymptotic metric discovered by Bielawski, Gibbons and Manton when each lower charge is 1"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Vector bundles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential geometry -- Global differential geometry -- Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- None of the above, but in this section</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum theory -- Quantum field theory; related classical field theories -- Yang-Mills and other gauge theories</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singer, Michael F.</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)115533265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="z">9781470472832</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">Volume 280, Number 1383 (sixth of 8 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1383</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034058871</subfield></datafield></record></collection> |
id | DE-604.BV048684564 |
illustrated | Illustrated |
index_date | 2024-07-03T21:26:12Z |
indexdate | 2024-07-10T09:46:02Z |
institution | BVB |
isbn | 9781470455415 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034058871 |
oclc_num | 1365620723 |
open_access_boolean | |
owner | DE-29T DE-83 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-29T DE-83 DE-355 DE-BY-UBR DE-11 |
physical | vii, 110 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Kottke, Chris (DE-588)1299394507 aut Partial compactification of monopoles and metric asymptotics Chris Kottke ; Michael Singer Providence, RI American Mathematical Society 2022 ©2022 vii, 110 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society Volume 280, Number 1383 (sixth of 8 numbers) Includes bibliographical references "We construct a partial compactification of the moduli space, Mk, of SU(2) magnetic monopoles on R3, wherein monopoles of charge k decompose into widely separated 'monopole clusters' of lower charge going off to infinity at comparable rates. The hyperKahler metric on Mk has a complete asymptotic expansion up to the boundary, the leading term of which generalizes the asymptotic metric discovered by Bielawski, Gibbons and Manton when each lower charge is 1"-- Vector bundles Global differential geometry Global analysis (Mathematics) Quantum field theory Differential geometry -- Global differential geometry -- Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills) Global analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- None of the above, but in this section Quantum theory -- Quantum field theory; related classical field theories -- Yang-Mills and other gauge theories Singer, Michael F. 1950- (DE-588)115533265 aut Erscheint auch als 9781470472832 Memoirs of the American Mathematical Society Volume 280, Number 1383 (sixth of 8 numbers) (DE-604)BV008000141 1383 |
spellingShingle | Kottke, Chris Singer, Michael F. 1950- Partial compactification of monopoles and metric asymptotics Memoirs of the American Mathematical Society |
title | Partial compactification of monopoles and metric asymptotics |
title_auth | Partial compactification of monopoles and metric asymptotics |
title_exact_search | Partial compactification of monopoles and metric asymptotics |
title_exact_search_txtP | Partial compactification of monopoles and metric asymptotics |
title_full | Partial compactification of monopoles and metric asymptotics Chris Kottke ; Michael Singer |
title_fullStr | Partial compactification of monopoles and metric asymptotics Chris Kottke ; Michael Singer |
title_full_unstemmed | Partial compactification of monopoles and metric asymptotics Chris Kottke ; Michael Singer |
title_short | Partial compactification of monopoles and metric asymptotics |
title_sort | partial compactification of monopoles and metric asymptotics |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT kottkechris partialcompactificationofmonopolesandmetricasymptotics AT singermichaelf partialcompactificationofmonopolesandmetricasymptotics |