Adiabatic evolution and shape resonances:
"Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, w...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Mathematical Society
2022
|
Schriftenreihe: | Memoirs of the American Mathematical Society
Volume 280, Number 1380 (third of 8 numbers) |
Schlagworte: | |
Zusammenfassung: | "Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"-- |
Beschreibung: | Includes bibliographical references |
Beschreibung: | v, 90 Seiten |
ISBN: | 9781470454210 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048684530 | ||
003 | DE-604 | ||
005 | 20230816 | ||
007 | t | ||
008 | 230131s2022 xxu |||| 00||| eng d | ||
020 | |a 9781470454210 |c paperback |9 978-1-4704-5421-0 | ||
024 | 7 | |a 10.1090/memo/1380 |2 doi | |
035 | |a (OCoLC)1365560478 | ||
035 | |a (DE-599)KXP1831296721 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-29T |a DE-83 |a DE-355 |a DE-11 | ||
082 | 0 | |a 515/.7242 |2 23 | |
084 | |a 35P20 |2 msc | ||
084 | |a 35B34 |2 msc | ||
084 | |a 35S05 |2 msc | ||
084 | |a 35J10 |2 msc | ||
100 | 1 | |a Hitrik, Michael |0 (DE-588)1177817659 |4 aut | |
245 | 1 | 0 | |a Adiabatic evolution and shape resonances |c Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand |
264 | 1 | |a Providence, RI |b American Mathematical Society |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a v, 90 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v Volume 280, Number 1380 (third of 8 numbers) | |
500 | |a Includes bibliographical references | ||
520 | 3 | |a "Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"-- | |
653 | 0 | |a Mathematical physics | |
653 | 0 | |a Adiabatic invariants | |
653 | 0 | |a Partial differential equations -- Qualitative properties of solutions -- Resonances | |
653 | 0 | |a Partial differential equations -- Elliptic equations and systems -- Schrödinger operator | |
653 | 0 | |a Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions | |
653 | 0 | |a Partial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators | |
700 | 1 | |a Mantile, Andrea |0 (DE-588)1299392741 |4 aut | |
700 | 1 | |a Sjöstrand, Johannes |0 (DE-588)121416615 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-7280-1 |
830 | 0 | |a Memoirs of the American Mathematical Society |v Volume 280, Number 1380 (third of 8 numbers) |w (DE-604)BV008000141 |9 1380 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034058837 |
Datensatz im Suchindex
_version_ | 1804184859673886720 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Hitrik, Michael Mantile, Andrea Sjöstrand, Johannes |
author_GND | (DE-588)1177817659 (DE-588)1299392741 (DE-588)121416615 |
author_facet | Hitrik, Michael Mantile, Andrea Sjöstrand, Johannes |
author_role | aut aut aut |
author_sort | Hitrik, Michael |
author_variant | m h mh a m am j s js |
building | Verbundindex |
bvnumber | BV048684530 |
ctrlnum | (OCoLC)1365560478 (DE-599)KXP1831296721 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02662nam a2200505 cb4500</leader><controlfield tag="001">BV048684530</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230816 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230131s2022 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470454210</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-4704-5421-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/memo/1380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1365560478</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1831296721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35P20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B34</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35S05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hitrik, Michael</subfield><subfield code="0">(DE-588)1177817659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adiabatic evolution and shape resonances</subfield><subfield code="c">Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">v, 90 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">Volume 280, Number 1380 (third of 8 numbers)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Adiabatic invariants</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Partial differential equations -- Qualitative properties of solutions -- Resonances</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Partial differential equations -- Elliptic equations and systems -- Schrödinger operator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Partial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mantile, Andrea</subfield><subfield code="0">(DE-588)1299392741</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sjöstrand, Johannes</subfield><subfield code="0">(DE-588)121416615</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-7280-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">Volume 280, Number 1380 (third of 8 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1380</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034058837</subfield></datafield></record></collection> |
id | DE-604.BV048684530 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:26:11Z |
indexdate | 2024-07-10T09:46:02Z |
institution | BVB |
isbn | 9781470454210 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034058837 |
oclc_num | 1365560478 |
open_access_boolean | |
owner | DE-29T DE-83 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-29T DE-83 DE-355 DE-BY-UBR DE-11 |
physical | v, 90 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Hitrik, Michael (DE-588)1177817659 aut Adiabatic evolution and shape resonances Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand Providence, RI American Mathematical Society 2022 © 2022 v, 90 Seiten txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society Volume 280, Number 1380 (third of 8 numbers) Includes bibliographical references "Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"-- Mathematical physics Adiabatic invariants Partial differential equations -- Qualitative properties of solutions -- Resonances Partial differential equations -- Elliptic equations and systems -- Schrödinger operator Partial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions Partial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators Mantile, Andrea (DE-588)1299392741 aut Sjöstrand, Johannes (DE-588)121416615 aut Erscheint auch als Online-Ausgabe 978-1-4704-7280-1 Memoirs of the American Mathematical Society Volume 280, Number 1380 (third of 8 numbers) (DE-604)BV008000141 1380 |
spellingShingle | Hitrik, Michael Mantile, Andrea Sjöstrand, Johannes Adiabatic evolution and shape resonances Memoirs of the American Mathematical Society |
title | Adiabatic evolution and shape resonances |
title_auth | Adiabatic evolution and shape resonances |
title_exact_search | Adiabatic evolution and shape resonances |
title_exact_search_txtP | Adiabatic evolution and shape resonances |
title_full | Adiabatic evolution and shape resonances Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand |
title_fullStr | Adiabatic evolution and shape resonances Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand |
title_full_unstemmed | Adiabatic evolution and shape resonances Michael Hitrik ; Andrea Mantile ; Johannes Sjöstrand |
title_short | Adiabatic evolution and shape resonances |
title_sort | adiabatic evolution and shape resonances |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT hitrikmichael adiabaticevolutionandshaperesonances AT mantileandrea adiabaticevolutionandshaperesonances AT sjostrandjohannes adiabaticevolutionandshaperesonances |