Introduction to computation: Haskell, logic and automata
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2021]
|
Schriftenreihe: | Undergraduate topics in computer science
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 366 Seiten Illustrationen, Diagramme |
ISBN: | 9783030769079 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048680172 | ||
003 | DE-604 | ||
005 | 20230320 | ||
007 | t | ||
008 | 230127s2021 a||| |||| 00||| eng d | ||
020 | |a 9783030769079 |9 978-3-030-76907-9 | ||
035 | |a (OCoLC)1296546370 | ||
035 | |a (DE-599)BVBBV048680172 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a ST 120 |0 (DE-625)143585: |2 rvk | ||
100 | 1 | |a Sannella, Donald |d 1956- |e Verfasser |0 (DE-588)1044032979 |4 aut | |
245 | 1 | 0 | |a Introduction to computation |b Haskell, logic and automata |c Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler |
264 | 1 | |a Cham, Switzerland |b Springer |c [2021] | |
300 | |a XVI, 366 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate topics in computer science | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Mathematics of Computing | |
650 | 4 | |a Computer Science Logic and Foundations of Programming | |
650 | 4 | |a Design and Analysis of Algorithms | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computer science—Mathematics | |
650 | 4 | |a Algorithms | |
650 | 0 | 7 | |a Suchverfahren |0 (DE-588)4132315-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a HASKELL |0 (DE-588)4318275-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automat |g Automatentheorie |0 (DE-588)4831958-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datentyp |0 (DE-588)4011149-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Datentyp |0 (DE-588)4011149-0 |D s |
689 | 0 | 1 | |a Suchverfahren |0 (DE-588)4132315-4 |D s |
689 | 0 | 2 | |a Automat |g Automatentheorie |0 (DE-588)4831958-2 |D s |
689 | 0 | 3 | |a HASKELL |0 (DE-588)4318275-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fourman, Michael P. |d 1950- |e Verfasser |0 (DE-588)1158154798 |4 aut | |
700 | 1 | |a Peng, Haoran |e Verfasser |4 aut | |
700 | 1 | |a Wadler, Philip |d 1956- |e Verfasser |0 (DE-588)1118540433 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-76908-6 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034054549&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-034054549 |
Datensatz im Suchindex
_version_ | 1804184851773915136 |
---|---|
adam_text | XI Contents Sets..................................................................................................... 1 2 Things and Equality of Things........................................................................... Sets, Set Membership and Set Equality............................................................ Subset................................................................................................................ Set Comprehensions........................................................................................ Operations on Sets............................................................................................ Ordered Pairs and CartesianProduct................................................................ Relations............................................................................................................. Functions........................................................................................................... 1 2 2 2 3 3 4 4 5 Exercises............................................................................................................. 6 Types................................................................................................... 7 8 Sets Versus Types.............................................................................................. Types in Haskell................................................................................................. Polymorphic Types............................................................................................ 3 5 6 9 Equality
Testing, Eq and Num......................................................................... 9 Defining New Types.......................................................................................... 10 Types Are Your Friend!....................................................................................... Exercises............................................................................................................. 11 12 Simple Computations........................................................................ 15 Arithmetic Expressions..................................................................................... 16 Int and Float.............................................................................................. Function Definitions.......................................................................................... 16 17 18 CaseAnalysis..................................................................................................... 4 8 Defining Functions by Cases............................................................................. Dependencies and Scope.................................................................................. 19 Indentation and Layout..................................................................................... Exercises............................................................................................................. 21 21 19 Venn Diagrams and Logical Connectives........................................ 23 Visualising
Sets................................................................................................... Visualising Operations on Sets......................................................................... Logical Connectives.......................................................................................... 24 26 27 Truth Tables...................................................................................................... Exercises............................................................................................................. 28 30 Lists and Comprehensions................................................................ Lists.................................................................................................................... зз 34 Functions on Lists.............................................................................................. Strings................................................................................................................ 34 36 Tuples................................................................................................................ 37 List Comprehensions......................................................................................... Enumeration Expressions.................................................................................. Lists and Sets..................................................................................................... Exercises............................................................................................................. 38 39
40 40 Features and Predicates.................................................................... Logic.................................................................................................................. 43 44 Our Universe of Discourse................................................................................ Representing the Universe................................................................................ Things Having More Complex Properties........................................................ 44 45 47
XII Contents 7 8 Checking Which Statements Hold.................................................................... 48 Sequents............................................................................................................ 49 Exercises............................................................................................................. 50 Testing Your Programs....................................................................... 51 Making Mistakes................................................................................................ Finding Mistakes Using Testing........................................................................ Testing Multiple Versions Against Each Other.................................................. 52 Property-Based Testing..................................................................................... Automated Testing Using QuickCheck..................................................... 54 55 Conditional Tests............................................................................................... Test Case Generation......................................................................................... 56 57 Testing Polymorphic Properties........................................................................ 58 Exercises............................................................................................................. 58 10 Patterns of Reasoning...................................................................... 61 62 62 63 65 66 More
Rules.......................................................................................................... 67 68 More Patterns of Reasoning............................................................. 71 Denying the Conclusion................................................................................... 72 Venn Diagrams with Inhabited Regions............................................................ Contraposition Again......................................................................................... Checking Syllogisms.......................................................................................... 73 Finding Counterexamples................................................................................ Symbolic Proofs of Soundness......................................................................... Deriving All of the Sound Syllogisms............................................................... 76 77 78 Exercises............................................................................................................. 79 Lists and Recursion............................................................................ Recursive Function Definitions......................................................................... More Recursive Function Definitions............................................................... 81 82 82 84 Sorting a List...................................................................................................... Recursion Versus List Comprehension.............................................................
85 87 Exercises............................................................................................................. 88 More Fun with Recursion.................................................................. 89 Counting........................................................................................................... Infinite Lists and Lazy Evaluation...................................................................... 90 91 Zip and Search................................................................................................... Select, Take and Drop....................................................................................... 92 94 Natural Numbers............................................................................................... Recursion and Induction................................................................................... 94 95 Exercises............................................................................................................. 97 Higher-Order Functions.................................................................... 99 Building Lists...................................................................................................... 11 12 54 Syllogisms.......................................................................................................... Relationships Between Predicates.................................................................... A Deductive Argument..................................................................................... Negated
Predicates............................................................................................ Contraposition and Double Negation............................................................... Exercises............................................................................................................. 9 53 74 74 Patterns of Computation.................................................................................. 100 Map.................................................................................................................... 100 Filter.................................................................................................................. 102 Fold.................................................................................................................... 103
XIII Contents f oldr and f oldi....................................................................................... 105 Combiningmap, filter and foldr/foldl ....................................... 106 Curried Types and Partial Application ............................................................. 107 Exercises............................................................................................................. 108 13 Higher and Higher............................................................................ 111 Lambda Expressions.......................................................................................... 112 Function Composition....................................................................................... 113 The Function Application Operator $............................................................... 114 Currying and Uncurrying Functions................................................................ Bindings and Lambda Expressions.................................................................. 114 115 Exercises............................................................................................................. 116 14 Sequent Calculus............................................................................... 119 Combining Predicates....................................................................................... 120 The Immediate Rule....................................................................................... 121 De Morgan’s
Laws............................................................................................. 121 Sequents Again................................................................................................. 122 Adding Antecedents and Succedents............................................................... 123 Sequent Calculus............................................................................................... 126 Proofs in Sequent Calculus................................................................................ 126 Exercises............................................................................................................. 129 15 Algebraic Data Types........................................................................ 131 More Types........................................................................................................ 132 Booleans............................................................................................................. Seasons.............................................................................................................. Shapes............................................................................................................... Tuples................................................................................................................ Lists.................................................................................................................... 132 133 134 136 137 Optional
Values................................................................................................. 138 Disjoint Union of Two Types............................................................................ 139 Exercises............................................................................................................. 140 16 Expression Trees................................................................................ 143 Trees.................................................................................................................. 144 Arithmetic Expressions..................................................................................... 144 Evaluating Arithmetic Expressions.................................................................... 146 Arithmetic Expressions with Infix Constructors................................................ 147 Propositions...................................................................................................... Evaluating Propositions..................................................................................... Satisfiability of Propositions.............................................................................. Structural Induction.......................................................................................... Mutual Recursion............................................................................................... Exercises............................................................................................................. 17 147 149 150 152 154 156 Karnaugh
Maps.................................................................................. 161 Simplifying Logical Expressions....................................................................... 162 Conjunctive Normal form and Disjunctive Normal form.................................. 162 Karnaugh Maps................................................................................................. 163 Converting Logical Expressions to DNF............................................................ 165 Converting Logical Expressions to CNF........................................................... 167 Exercises............................................................................................................. 168 18 Relations and Quantifiers................................................................. 169 Expressing Logical Statements......................................................................... 170
XIV Contents Quantifiers.......................................................................................................... 170 Relations.............................................................................................................. 172 Another Universe.............................................................................................. 173 Dependencies..................................................................................................... 174 Exercises............................................................................................................. 19 175 Checking Satisfiability....................................................................... 177 178 178 The DPLL Algorithm: Idea.................................................................................. 180 The DPLL Algorithm: Implementation.............................................................. 182 Satisfiability........................................................................................................ Representing CNF.............................................................................................. Application: Sudoku........................................................................................... 185 Exercises............................................................................................................. 20 187 Data Representation.......................................................................... 189 Four Different Representations of
Sets............................................................. 190 Rates of Growth: Big-0 Notation...................................................................... 190 Representing Sets as Lists.................................................................................. 193 Representing Sets as Ordered Lists Without Duplicates.................................. 194 Representing Sets as Ordered Trees................................................................. 195 Representing Sets as Balanced Trees............................................................... 199 Comparison........................................................................................................ 202 Polymorphic Sets............................................................................................... 202 Exercises............................................................................................................. 203 21 Data Abstraction............................................................................... 205 Modular Design................................................................................................. 206 Sets as Unordered Lists..................................................................................... 207 Sets as Ordered Lists Without Duplicates........................................................ 208 Sets as Ordered Trees......................................................................................... 210 Sets as AVL
Trees............................................................................................... 211 Abstraction Barriers........................................................................................... 212 Abstraction Barriers: SetAsOrderedTree and SetAsAVLTree... 212 Abstraction Barriers: SetAsList and SetAsOrderedList .... 214 Testing............................................................................................................... 216 Exercises............................................................................................................. 217 22 Efficient CNF Conversion........................................................... ... 219 CNF Revisited..................................................................................................... 220 Implication and Bi-implication......................................................................... 220 Boolean Algebra............................................................................................... 222 Logical Circuits................................................................................................... 223 The Tseytin Transformation.............................................................................. 225 Tseytin on Expressions....................................................................................... 227 Exercises............................................................................................................. 228 23 Counting Satisfying Valuations....................................................... 231
2-SAT.................................................................................................................. 232 Implication and Order....................................................................................... 232 The Arrow Rule................................................................................................... 234 Complementary Literals................................................................................... 238 Implication Diagrams with Cycles.................................................................... 241 Exercises............................................................................................................. 245
XV Contents 24 Type Classes....................................................................................... 247 Bundling Types with Functions......................................................................... 248 Declaring Instances of Type Classes................................................................. 248 Defining Type Classes....................................................................................... 250 Numeric Type Classes....................................................................................... 253 Functors............................................................................................................. 254 Type Classes are Syntactic Sugar...................................................................... 256 Exercises............................................................................................................. 257 25 Search in Trees................................................................................... 259 Representing a Search Space............................................................................ 260 Trees, Again........................................................................................................ Depth-First Search............................................................................................ Breadth-First Search.......................................................................................... Best-First Search............................................................................................... 260 261 263 265
Exercises............................................................................................................. 267 26 Combinatorial Algorithms............................................................... 269 The Combinatorial Explosion............................................................................ 270 Repetitions in a List............................................................................................ 270 Sublists............................................................................................................... 271 Cartesian Product.............................................................................................. 272 Permutationsofa List....................................................................................... 273 Choosing k Elements from a List...................................................................... 275 Partitions of a Number....................................................................................... 276 Making Change................................................................................................. 277 Eight Queens Problem....................................................................................... 278 Exercises............................................................................................................. 280 27 Finite Automata................................................................................ 281 Models of Computation................................................................................... 282 States, Input and
Transitions............................................................................ 282 Some Examples................................................................................................. 285 Deterministic Finite Automata......................................................................... 286 Some More Examples........................................................................................ 287 How to Build a DFA............................................................................................ 288 Black Hole Convention ..................................................................................... 290 Exercises............................................................................................................. 292 28 Deterministic Finite Automata........................................................ 293 Diagrams and Greek Letters.............................................................................. 294 Deterministic Finite Automata, Formally.......................................................... 294 Complement DFA.............................................................................................. 297 Product DFA...................................................................................................... 298 Sum DFA........................................................................................................... 301 Exercises............................................................................................................. 302 29 Non-deterministic Finite
Automata................................................ зоз Choices, Choices............................................................................................... 304 Comparing a DFA with an NFA......................................................................... 304 Some More Examples........................................................................................ 307 Non-deterministic Finite Automata, Formally................................................. 308 NFAs in Haskell................................................................................................... 309 Converting an NFA to a DFA............................................................................ 311
XVI Contents ε-NFAs................................................................................................................. 316 Concatenation of ε-NFAs................................................................................... 320 Exercises.............................................................................................................. 321 зо Input/Output and Monads................................................................ 323 Interacting with the Real World........................................................................ 324 Commands......................................................................................................... 324 Performing Commands...................................................................................... 325 Commands That Return a Value........................................................................ 326 do Notation....................................................................................................... 329 Monads............................................................................................................... 330 Lists as a Monad.................................................................................................. 331 Parsers as a Monad............................................................................................. 334 Exercises............................................................................................................. 338 31 Regular
Expressions.......................................................................... 339 Describing Regular Languages.......................................................................... 340 Examples............................................................................................................ 340 Simplifying Regular Expressions........................................................................ 341 Regular Expressions Describe Regular Languages........................................... 342 Regular Expressions Describe All Regular Languages...................................... 346 Exercises............................................................................................................. 348 32 Non-Regular Languages.................................................................... 351 Boundaries of Expressibility............................................................................... 352 Accepting Infinite Languages Using a Finite Number of States...................... 352 A Non-Regular Language.................................................................................. 353 The Pumping Lemma......................................................................................... 354 Proving That a Language Is Not Regular.......................................................... 354 Exercises............................................................................................................. 355 Supplementary Information Appendix: The Haskell
Ecosystem.................................................................... 358 Index.................................................................................................................. 361
|
adam_txt |
XI Contents Sets. 1 2 Things and Equality of Things. Sets, Set Membership and Set Equality. Subset. Set Comprehensions. Operations on Sets. Ordered Pairs and CartesianProduct. Relations. Functions. 1 2 2 2 3 3 4 4 5 Exercises. 6 Types. 7 8 Sets Versus Types. Types in Haskell. Polymorphic Types. 3 5 6 9 Equality
Testing, Eq and Num. 9 Defining New Types. 10 Types Are Your Friend!. Exercises. 11 12 Simple Computations. 15 Arithmetic Expressions. 16 Int and Float. Function Definitions. 16 17 18 CaseAnalysis. 4 8 Defining Functions by Cases. Dependencies and Scope. 19 Indentation and Layout. Exercises. 21 21 19 Venn Diagrams and Logical Connectives. 23 Visualising
Sets. Visualising Operations on Sets. Logical Connectives. 24 26 27 Truth Tables. Exercises. 28 30 Lists and Comprehensions. Lists. зз 34 Functions on Lists. Strings. 34 36 Tuples. 37 List Comprehensions. Enumeration Expressions. Lists and Sets. Exercises. 38 39
40 40 Features and Predicates. Logic. 43 44 Our Universe of Discourse. Representing the Universe. Things Having More Complex Properties. 44 45 47
XII Contents 7 8 Checking Which Statements Hold. 48 Sequents. 49 Exercises. 50 Testing Your Programs. 51 Making Mistakes. Finding Mistakes Using Testing. Testing Multiple Versions Against Each Other. 52 Property-Based Testing. Automated Testing Using QuickCheck. 54 55 Conditional Tests. Test Case Generation. 56 57 Testing Polymorphic Properties. 58 Exercises. 58 10 Patterns of Reasoning. 61 62 62 63 65 66 More
Rules. 67 68 More Patterns of Reasoning. 71 Denying the Conclusion. 72 Venn Diagrams with Inhabited Regions. Contraposition Again. Checking Syllogisms. 73 Finding Counterexamples. Symbolic Proofs of Soundness. Deriving All of the Sound Syllogisms. 76 77 78 Exercises. 79 Lists and Recursion. Recursive Function Definitions. More Recursive Function Definitions. 81 82 82 84 Sorting a List. Recursion Versus List Comprehension.
85 87 Exercises. 88 More Fun with Recursion. 89 Counting. Infinite Lists and Lazy Evaluation. 90 91 Zip and Search. Select, Take and Drop. 92 94 Natural Numbers. Recursion and Induction. 94 95 Exercises. 97 Higher-Order Functions. 99 Building Lists. 11 12 54 Syllogisms. Relationships Between Predicates. A Deductive Argument. Negated
Predicates. Contraposition and Double Negation. Exercises. 9 53 74 74 Patterns of Computation. 100 Map. 100 Filter. 102 Fold. 103
XIII Contents f oldr and f oldi. 105 Combiningmap, filter and foldr/foldl . 106 Curried Types and Partial Application . 107 Exercises. 108 13 Higher and Higher. 111 Lambda Expressions. 112 Function Composition. 113 The Function Application Operator $. 114 Currying and Uncurrying Functions. Bindings and Lambda Expressions. 114 115 Exercises. 116 14 Sequent Calculus. 119 Combining Predicates. 120 The "Immediate" Rule. 121 De Morgan’s
Laws. 121 Sequents Again. 122 Adding Antecedents and Succedents. 123 Sequent Calculus. 126 Proofs in Sequent Calculus. 126 Exercises. 129 15 Algebraic Data Types. 131 More Types. 132 Booleans. Seasons. Shapes. Tuples. Lists. 132 133 134 136 137 Optional
Values. 138 Disjoint Union of Two Types. 139 Exercises. 140 16 Expression Trees. 143 Trees. 144 Arithmetic Expressions. 144 Evaluating Arithmetic Expressions. 146 Arithmetic Expressions with Infix Constructors. 147 Propositions. Evaluating Propositions. Satisfiability of Propositions. Structural Induction. Mutual Recursion. Exercises. 17 147 149 150 152 154 156 Karnaugh
Maps. 161 Simplifying Logical Expressions. 162 Conjunctive Normal form and Disjunctive Normal form. 162 Karnaugh Maps. 163 Converting Logical Expressions to DNF. 165 Converting Logical Expressions to CNF. 167 Exercises. 168 18 Relations and Quantifiers. 169 Expressing Logical Statements. 170
XIV Contents Quantifiers. 170 Relations. 172 Another Universe. 173 Dependencies. 174 Exercises. 19 175 Checking Satisfiability. 177 178 178 The DPLL Algorithm: Idea. 180 The DPLL Algorithm: Implementation. 182 Satisfiability. Representing CNF. Application: Sudoku. 185 Exercises. 20 187 Data Representation. 189 Four Different Representations of
Sets. 190 Rates of Growth: Big-0 Notation. 190 Representing Sets as Lists. 193 Representing Sets as Ordered Lists Without Duplicates. 194 Representing Sets as Ordered Trees. 195 Representing Sets as Balanced Trees. 199 Comparison. 202 Polymorphic Sets. 202 Exercises. 203 21 Data Abstraction. 205 Modular Design. 206 Sets as Unordered Lists. 207 Sets as Ordered Lists Without Duplicates. 208 Sets as Ordered Trees. 210 Sets as AVL
Trees. 211 Abstraction Barriers. 212 Abstraction Barriers: SetAsOrderedTree and SetAsAVLTree. 212 Abstraction Barriers: SetAsList and SetAsOrderedList . 214 Testing. 216 Exercises. 217 22 Efficient CNF Conversion. . 219 CNF Revisited. 220 Implication and Bi-implication. 220 Boolean Algebra. 222 Logical Circuits. 223 The Tseytin Transformation. 225 Tseytin on Expressions. 227 Exercises. 228 23 Counting Satisfying Valuations. 231
2-SAT. 232 Implication and Order. 232 The Arrow Rule. 234 Complementary Literals. 238 Implication Diagrams with Cycles. 241 Exercises. 245
XV Contents 24 Type Classes. 247 Bundling Types with Functions. 248 Declaring Instances of Type Classes. 248 Defining Type Classes. 250 Numeric Type Classes. 253 Functors. 254 Type Classes are Syntactic Sugar. 256 Exercises. 257 25 Search in Trees. 259 Representing a Search Space. 260 Trees, Again. Depth-First Search. Breadth-First Search. Best-First Search. 260 261 263 265
Exercises. 267 26 Combinatorial Algorithms. 269 The Combinatorial Explosion. 270 Repetitions in a List. 270 Sublists. 271 Cartesian Product. 272 Permutationsofa List. 273 Choosing k Elements from a List. 275 Partitions of a Number. 276 Making Change. 277 Eight Queens Problem. 278 Exercises. 280 27 Finite Automata. 281 Models of Computation. 282 States, Input and
Transitions. 282 Some Examples. 285 Deterministic Finite Automata. 286 Some More Examples. 287 How to Build a DFA. 288 Black Hole Convention . 290 Exercises. 292 28 Deterministic Finite Automata. 293 Diagrams and Greek Letters. 294 Deterministic Finite Automata, Formally. 294 Complement DFA. 297 Product DFA. 298 Sum DFA. 301 Exercises. 302 29 Non-deterministic Finite
Automata. зоз Choices, Choices. 304 Comparing a DFA with an NFA. 304 Some More Examples. 307 Non-deterministic Finite Automata, Formally. 308 NFAs in Haskell. 309 Converting an NFA to a DFA. 311
XVI Contents ε-NFAs. 316 Concatenation of ε-NFAs. 320 Exercises. 321 зо Input/Output and Monads. 323 Interacting with the Real World. 324 Commands. 324 Performing Commands. 325 Commands That Return a Value. 326 do Notation. 329 Monads. 330 Lists as a Monad. 331 Parsers as a Monad. 334 Exercises. 338 31 Regular
Expressions. 339 Describing Regular Languages. 340 Examples. 340 Simplifying Regular Expressions. 341 Regular Expressions Describe Regular Languages. 342 Regular Expressions Describe All Regular Languages. 346 Exercises. 348 32 Non-Regular Languages. 351 Boundaries of Expressibility. 352 Accepting Infinite Languages Using a Finite Number of States. 352 A Non-Regular Language. 353 The Pumping Lemma. 354 Proving That a Language Is Not Regular. 354 Exercises. 355 Supplementary Information Appendix: The Haskell
Ecosystem. 358 Index. 361 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Sannella, Donald 1956- Fourman, Michael P. 1950- Peng, Haoran Wadler, Philip 1956- |
author_GND | (DE-588)1044032979 (DE-588)1158154798 (DE-588)1118540433 |
author_facet | Sannella, Donald 1956- Fourman, Michael P. 1950- Peng, Haoran Wadler, Philip 1956- |
author_role | aut aut aut aut |
author_sort | Sannella, Donald 1956- |
author_variant | d s ds m p f mp mpf h p hp p w pw |
building | Verbundindex |
bvnumber | BV048680172 |
classification_rvk | ST 120 |
ctrlnum | (OCoLC)1296546370 (DE-599)BVBBV048680172 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02307nam a2200541zc 4500</leader><controlfield tag="001">BV048680172</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230320 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230127s2021 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030769079</subfield><subfield code="9">978-3-030-76907-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1296546370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048680172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 120</subfield><subfield code="0">(DE-625)143585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sannella, Donald</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1044032979</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to computation</subfield><subfield code="b">Haskell, logic and automata</subfield><subfield code="c">Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 366 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate topics in computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics of Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science Logic and Foundations of Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design and Analysis of Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science—Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Suchverfahren</subfield><subfield code="0">(DE-588)4132315-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">HASKELL</subfield><subfield code="0">(DE-588)4318275-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automat</subfield><subfield code="g">Automatentheorie</subfield><subfield code="0">(DE-588)4831958-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datentyp</subfield><subfield code="0">(DE-588)4011149-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datentyp</subfield><subfield code="0">(DE-588)4011149-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Suchverfahren</subfield><subfield code="0">(DE-588)4132315-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Automat</subfield><subfield code="g">Automatentheorie</subfield><subfield code="0">(DE-588)4831958-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">HASKELL</subfield><subfield code="0">(DE-588)4318275-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fourman, Michael P.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158154798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Haoran</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wadler, Philip</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1118540433</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-76908-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034054549&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034054549</subfield></datafield></record></collection> |
id | DE-604.BV048680172 |
illustrated | Illustrated |
index_date | 2024-07-03T21:25:12Z |
indexdate | 2024-07-10T09:45:55Z |
institution | BVB |
isbn | 9783030769079 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034054549 |
oclc_num | 1296546370 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XVI, 366 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate topics in computer science |
spelling | Sannella, Donald 1956- Verfasser (DE-588)1044032979 aut Introduction to computation Haskell, logic and automata Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler Cham, Switzerland Springer [2021] XVI, 366 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Undergraduate topics in computer science Theory of Computation Mathematics of Computing Computer Science Logic and Foundations of Programming Design and Analysis of Algorithms Computer science Computer science—Mathematics Algorithms Suchverfahren (DE-588)4132315-4 gnd rswk-swf HASKELL (DE-588)4318275-6 gnd rswk-swf Automat Automatentheorie (DE-588)4831958-2 gnd rswk-swf Datentyp (DE-588)4011149-0 gnd rswk-swf Datentyp (DE-588)4011149-0 s Suchverfahren (DE-588)4132315-4 s Automat Automatentheorie (DE-588)4831958-2 s HASKELL (DE-588)4318275-6 s DE-604 Fourman, Michael P. 1950- Verfasser (DE-588)1158154798 aut Peng, Haoran Verfasser aut Wadler, Philip 1956- Verfasser (DE-588)1118540433 aut Erscheint auch als Online-Ausgabe 978-3-030-76908-6 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034054549&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sannella, Donald 1956- Fourman, Michael P. 1950- Peng, Haoran Wadler, Philip 1956- Introduction to computation Haskell, logic and automata Theory of Computation Mathematics of Computing Computer Science Logic and Foundations of Programming Design and Analysis of Algorithms Computer science Computer science—Mathematics Algorithms Suchverfahren (DE-588)4132315-4 gnd HASKELL (DE-588)4318275-6 gnd Automat Automatentheorie (DE-588)4831958-2 gnd Datentyp (DE-588)4011149-0 gnd |
subject_GND | (DE-588)4132315-4 (DE-588)4318275-6 (DE-588)4831958-2 (DE-588)4011149-0 |
title | Introduction to computation Haskell, logic and automata |
title_auth | Introduction to computation Haskell, logic and automata |
title_exact_search | Introduction to computation Haskell, logic and automata |
title_exact_search_txtP | Introduction to computation Haskell, logic and automata |
title_full | Introduction to computation Haskell, logic and automata Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler |
title_fullStr | Introduction to computation Haskell, logic and automata Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler |
title_full_unstemmed | Introduction to computation Haskell, logic and automata Donald Sannella, Michael Fourman, Haoran Peng, Philip Wadler |
title_short | Introduction to computation |
title_sort | introduction to computation haskell logic and automata |
title_sub | Haskell, logic and automata |
topic | Theory of Computation Mathematics of Computing Computer Science Logic and Foundations of Programming Design and Analysis of Algorithms Computer science Computer science—Mathematics Algorithms Suchverfahren (DE-588)4132315-4 gnd HASKELL (DE-588)4318275-6 gnd Automat Automatentheorie (DE-588)4831958-2 gnd Datentyp (DE-588)4011149-0 gnd |
topic_facet | Theory of Computation Mathematics of Computing Computer Science Logic and Foundations of Programming Design and Analysis of Algorithms Computer science Computer science—Mathematics Algorithms Suchverfahren HASKELL Automat Automatentheorie Datentyp |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034054549&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT sannelladonald introductiontocomputationhaskelllogicandautomata AT fourmanmichaelp introductiontocomputationhaskelllogicandautomata AT penghaoran introductiontocomputationhaskelllogicandautomata AT wadlerphilip introductiontocomputationhaskelllogicandautomata |