Schrödinger operators: eigenvalues and Lieb-Thirring inequalities
The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background materia...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge studies in advanced mathematics
200 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 UBM01 Volltext |
Zusammenfassung: | The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research |
Beschreibung: | 1 Online-Ressource (xiii, 507 Seiten) |
ISBN: | 9781009218436 |
DOI: | 10.1017/9781009218436 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048665527 | ||
003 | DE-604 | ||
005 | 20230818 | ||
007 | cr|uuu---uuuuu | ||
008 | 230120s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009218436 |c Online |9 978-1-00-921843-6 | ||
024 | 7 | |a 10.1017/9781009218436 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009218436 | ||
035 | |a (OCoLC)1369563411 | ||
035 | |a (DE-599)BVBBV048665527 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-19 | ||
082 | 0 | |a 515.724 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Frank, Rupert L. |d 1978- |e Verfasser |0 (DE-588)1236600002 |4 aut | |
245 | 1 | 0 | |a Schrödinger operators |b eigenvalues and Lieb-Thirring inequalities |c Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xiii, 507 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 200 | |
520 | |a The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research | ||
650 | 4 | |a Schrödinger operator | |
700 | 1 | |a Laptev, Ari |d 1950- |e Verfasser |0 (DE-588)1012993876 |4 aut | |
700 | 1 | |a Weidl, Timo |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1095129147 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-00-921846-7 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 200 |w (DE-604)BV044781283 |9 200 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009218436 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034040144 | ||
966 | e | |u https://doi.org/10.1017/9781009218436 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009218436 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009218436 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009218436 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184815170224128 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Frank, Rupert L. 1978- Laptev, Ari 1950- Weidl, Timo ca. 20./21. Jh |
author_GND | (DE-588)1236600002 (DE-588)1012993876 (DE-588)1095129147 |
author_facet | Frank, Rupert L. 1978- Laptev, Ari 1950- Weidl, Timo ca. 20./21. Jh |
author_role | aut aut aut |
author_sort | Frank, Rupert L. 1978- |
author_variant | r l f rl rlf a l al t w tw |
building | Verbundindex |
bvnumber | BV048665527 |
classification_rvk | SK 620 SK 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009218436 (OCoLC)1369563411 (DE-599)BVBBV048665527 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009218436 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02974nmm a2200469zcb4500</leader><controlfield tag="001">BV048665527</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230818 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230120s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009218436</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-921843-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009218436</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009218436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369563411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048665527</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frank, Rupert L.</subfield><subfield code="d">1978-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1236600002</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schrödinger operators</subfield><subfield code="b">eigenvalues and Lieb-Thirring inequalities</subfield><subfield code="c">Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 507 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">200</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schrödinger operator</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laptev, Ari</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1012993876</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weidl, Timo</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1095129147</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-00-921846-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">200</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">200</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009218436</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034040144</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009218436</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009218436</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009218436</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009218436</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048665527 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:22:04Z |
indexdate | 2024-07-10T09:45:20Z |
institution | BVB |
isbn | 9781009218436 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034040144 |
oclc_num | 1369563411 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-634 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xiii, 507 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Frank, Rupert L. 1978- Verfasser (DE-588)1236600002 aut Schrödinger operators eigenvalues and Lieb-Thirring inequalities Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart) Cambridge Cambridge University Press 2023 1 Online-Ressource (xiii, 507 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 200 The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research Schrödinger operator Laptev, Ari 1950- Verfasser (DE-588)1012993876 aut Weidl, Timo ca. 20./21. Jh. Verfasser (DE-588)1095129147 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-00-921846-7 Cambridge studies in advanced mathematics 200 (DE-604)BV044781283 200 https://doi.org/10.1017/9781009218436 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Frank, Rupert L. 1978- Laptev, Ari 1950- Weidl, Timo ca. 20./21. Jh Schrödinger operators eigenvalues and Lieb-Thirring inequalities Cambridge studies in advanced mathematics Schrödinger operator |
title | Schrödinger operators eigenvalues and Lieb-Thirring inequalities |
title_auth | Schrödinger operators eigenvalues and Lieb-Thirring inequalities |
title_exact_search | Schrödinger operators eigenvalues and Lieb-Thirring inequalities |
title_exact_search_txtP | Schrödinger operators eigenvalues and Lieb-Thirring inequalities |
title_full | Schrödinger operators eigenvalues and Lieb-Thirring inequalities Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart) |
title_fullStr | Schrödinger operators eigenvalues and Lieb-Thirring inequalities Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart) |
title_full_unstemmed | Schrödinger operators eigenvalues and Lieb-Thirring inequalities Rupert L. Frank (Ludwig-Maximilians-Universität München), Ari Laptev (Imperial College of Science, Technology and Medicine, London), Timo Weidl (Universität Stuttgart) |
title_short | Schrödinger operators |
title_sort | schrodinger operators eigenvalues and lieb thirring inequalities |
title_sub | eigenvalues and Lieb-Thirring inequalities |
topic | Schrödinger operator |
topic_facet | Schrödinger operator |
url | https://doi.org/10.1017/9781009218436 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT frankrupertl schrodingeroperatorseigenvaluesandliebthirringinequalities AT laptevari schrodingeroperatorseigenvaluesandliebthirringinequalities AT weidltimo schrodingeroperatorseigenvaluesandliebthirringinequalities |