Continuous groups for physicists:
Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understandin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 Volltext |
Zusammenfassung: | Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time |
Beschreibung: | Title from publisher's bibliographic system (viewed on 24 Nov 2022) |
Beschreibung: | 1 Online-Ressource (xvi, 280 Seiten) |
ISBN: | 9781009187060 |
DOI: | 10.1017/9781009187060 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048665373 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230120s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009187060 |c Online |9 978-1-00-918706-0 | ||
024 | 7 | |a 10.1017/9781009187060 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009187060 | ||
035 | |a (OCoLC)1369554470 | ||
035 | |a (DE-599)BVBBV048665373 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 530.15222 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a UK 3000 |0 (DE-625)145799: |2 rvk | ||
100 | 1 | |a Mukunda, Narasimhaiengar |d 1939- |0 (DE-588)110436180 |4 aut | |
245 | 1 | 0 | |a Continuous groups for physicists |c Narasimhaiengar Mukunda, Subhash Chaturvedi |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xvi, 280 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 24 Nov 2022) | ||
520 | |a Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time | ||
650 | 4 | |a Group theory | |
650 | 4 | |a Representations of groups | |
650 | 4 | |a Continuous groups | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chaturvedi, Subhash |d 1950- |0 (DE-588)1278691383 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-918705-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009187060 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034039994 | ||
966 | e | |u https://doi.org/10.1017/9781009187060 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009187060 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009187060 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184814877671424 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mukunda, Narasimhaiengar 1939- Chaturvedi, Subhash 1950- |
author_GND | (DE-588)110436180 (DE-588)1278691383 |
author_facet | Mukunda, Narasimhaiengar 1939- Chaturvedi, Subhash 1950- |
author_role | aut aut |
author_sort | Mukunda, Narasimhaiengar 1939- |
author_variant | n m nm s c sc |
building | Verbundindex |
bvnumber | BV048665373 |
classification_rvk | SK 340 UK 3000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009187060 (OCoLC)1369554470 (DE-599)BVBBV048665373 |
dewey-full | 530.15222 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15222 |
dewey-search | 530.15222 |
dewey-sort | 3530.15222 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
doi_str_mv | 10.1017/9781009187060 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03000nmm a2200493zc 4500</leader><controlfield tag="001">BV048665373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230120s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009187060</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-918706-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009187060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009187060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1369554470</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048665373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15222</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 3000</subfield><subfield code="0">(DE-625)145799:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukunda, Narasimhaiengar</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)110436180</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous groups for physicists</subfield><subfield code="c">Narasimhaiengar Mukunda, Subhash Chaturvedi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 280 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 24 Nov 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chaturvedi, Subhash</subfield><subfield code="d">1950-</subfield><subfield code="0">(DE-588)1278691383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-918705-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009187060</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034039994</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009187060</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009187060</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009187060</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048665373 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:22:02Z |
indexdate | 2024-07-10T09:45:19Z |
institution | BVB |
isbn | 9781009187060 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034039994 |
oclc_num | 1369554470 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (xvi, 280 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Mukunda, Narasimhaiengar 1939- (DE-588)110436180 aut Continuous groups for physicists Narasimhaiengar Mukunda, Subhash Chaturvedi Cambridge, United Kingdom ; New York, NY Cambridge University Press 2022 1 Online-Ressource (xvi, 280 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 24 Nov 2022) Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time Group theory Representations of groups Continuous groups Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s DE-604 Chaturvedi, Subhash 1950- (DE-588)1278691383 aut Erscheint auch als Druck-Ausgabe 978-1-00-918705-3 https://doi.org/10.1017/9781009187060 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Mukunda, Narasimhaiengar 1939- Chaturvedi, Subhash 1950- Continuous groups for physicists Group theory Representations of groups Continuous groups Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4072157-7 |
title | Continuous groups for physicists |
title_auth | Continuous groups for physicists |
title_exact_search | Continuous groups for physicists |
title_exact_search_txtP | Continuous groups for physicists |
title_full | Continuous groups for physicists Narasimhaiengar Mukunda, Subhash Chaturvedi |
title_fullStr | Continuous groups for physicists Narasimhaiengar Mukunda, Subhash Chaturvedi |
title_full_unstemmed | Continuous groups for physicists Narasimhaiengar Mukunda, Subhash Chaturvedi |
title_short | Continuous groups for physicists |
title_sort | continuous groups for physicists |
topic | Group theory Representations of groups Continuous groups Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Group theory Representations of groups Continuous groups Gruppentheorie |
url | https://doi.org/10.1017/9781009187060 |
work_keys_str_mv | AT mukundanarasimhaiengar continuousgroupsforphysicists AT chaturvedisubhash continuousgroupsforphysicists |