Engineering design optimization:
"Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
[2022]
|
Schlagworte: | |
Zusammenfassung: | "Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 200 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice"-- |
Beschreibung: | xiii, 637 Seiten Diagramme 26 cm |
ISBN: | 9781108833417 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048664940 | ||
003 | DE-604 | ||
005 | 20240801 | ||
007 | t | ||
008 | 230119s2022 |||| |||| 00||| eng d | ||
015 | |a GBC1D5563 |2 dnb | ||
020 | |a 9781108833417 |q hardback |9 978-1-108-83341-7 | ||
035 | |a (OCoLC)1267383195 | ||
035 | |a (DE-599)BVBBV048664940 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Martins, Joaquim R. R. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Engineering design optimization |c Joaquim R. R. A. Martins, Andrew Ning |
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c [2022] | |
300 | |a xiii, 637 Seiten |b Diagramme |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a A short history of optimization -- Numerical models and solvers -- Unconstrained gradient-based optimization -- Constrained gradient-based optimization -- Computing derivatives -- Gradient-free optimization -- Discrete optimization -- Multiobjective optimization -- Surrogate-based optimization -- Convex optimization -- Optimization under uncertainty -- Multidisciplinary design optimization | |
520 | |a "Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 200 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice"-- | ||
650 | 4 | |a Engineering design / Mathematical models | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Multidisciplinary design optimization | |
650 | 4 | |a Conception technique / Modèles mathématiques | |
650 | 4 | |a Optimisation mathématique | |
650 | 4 | |a Optimisation multidisciplinaire (Conception technique) | |
650 | 7 | |a MATHEMATICS / Optimization |2 bisacsh | |
650 | 7 | |a Engineering design / Mathematical models |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Multidisciplinary design optimization |2 fast | |
700 | 1 | |a Ning, Andrew |e Verfasser |0 (DE-588)1252382421 |4 aut | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034039565 |
Datensatz im Suchindex
_version_ | 1806233019326922752 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Martins, Joaquim R. R. A. Ning, Andrew |
author_GND | (DE-588)1252382421 |
author_facet | Martins, Joaquim R. R. A. Ning, Andrew |
author_role | aut aut |
author_sort | Martins, Joaquim R. R. A. |
author_variant | j r r a m jrra jrram a n an |
building | Verbundindex |
bvnumber | BV048664940 |
classification_rvk | SK 870 |
contents | A short history of optimization -- Numerical models and solvers -- Unconstrained gradient-based optimization -- Constrained gradient-based optimization -- Computing derivatives -- Gradient-free optimization -- Discrete optimization -- Multiobjective optimization -- Surrogate-based optimization -- Convex optimization -- Optimization under uncertainty -- Multidisciplinary design optimization |
ctrlnum | (OCoLC)1267383195 (DE-599)BVBBV048664940 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048664940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240801</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230119s2022 |||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC1D5563</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108833417</subfield><subfield code="q">hardback</subfield><subfield code="9">978-1-108-83341-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1267383195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048664940</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martins, Joaquim R. R. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering design optimization</subfield><subfield code="c">Joaquim R. R. A. Martins, Andrew Ning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 637 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A short history of optimization -- Numerical models and solvers -- Unconstrained gradient-based optimization -- Constrained gradient-based optimization -- Computing derivatives -- Gradient-free optimization -- Discrete optimization -- Multiobjective optimization -- Surrogate-based optimization -- Convex optimization -- Optimization under uncertainty -- Multidisciplinary design optimization</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 200 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering design / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidisciplinary design optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conception technique / Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimisation multidisciplinaire (Conception technique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Optimization</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering design / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multidisciplinary design optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Andrew</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252382421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034039565</subfield></datafield></record></collection> |
id | DE-604.BV048664940 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:21:54Z |
indexdate | 2024-08-02T00:20:37Z |
institution | BVB |
isbn | 9781108833417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034039565 |
oclc_num | 1267383195 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | xiii, 637 Seiten Diagramme 26 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Martins, Joaquim R. R. A. Verfasser aut Engineering design optimization Joaquim R. R. A. Martins, Andrew Ning Cambridge, United Kingdom Cambridge University Press [2022] xiii, 637 Seiten Diagramme 26 cm txt rdacontent n rdamedia nc rdacarrier A short history of optimization -- Numerical models and solvers -- Unconstrained gradient-based optimization -- Constrained gradient-based optimization -- Computing derivatives -- Gradient-free optimization -- Discrete optimization -- Multiobjective optimization -- Surrogate-based optimization -- Convex optimization -- Optimization under uncertainty -- Multidisciplinary design optimization "Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 200 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice"-- Engineering design / Mathematical models Mathematical optimization Multidisciplinary design optimization Conception technique / Modèles mathématiques Optimisation mathématique Optimisation multidisciplinaire (Conception technique) MATHEMATICS / Optimization bisacsh Engineering design / Mathematical models fast Mathematical optimization fast Multidisciplinary design optimization fast Ning, Andrew Verfasser (DE-588)1252382421 aut |
spellingShingle | Martins, Joaquim R. R. A. Ning, Andrew Engineering design optimization A short history of optimization -- Numerical models and solvers -- Unconstrained gradient-based optimization -- Constrained gradient-based optimization -- Computing derivatives -- Gradient-free optimization -- Discrete optimization -- Multiobjective optimization -- Surrogate-based optimization -- Convex optimization -- Optimization under uncertainty -- Multidisciplinary design optimization Engineering design / Mathematical models Mathematical optimization Multidisciplinary design optimization Conception technique / Modèles mathématiques Optimisation mathématique Optimisation multidisciplinaire (Conception technique) MATHEMATICS / Optimization bisacsh Engineering design / Mathematical models fast Mathematical optimization fast Multidisciplinary design optimization fast |
title | Engineering design optimization |
title_auth | Engineering design optimization |
title_exact_search | Engineering design optimization |
title_exact_search_txtP | Engineering design optimization |
title_full | Engineering design optimization Joaquim R. R. A. Martins, Andrew Ning |
title_fullStr | Engineering design optimization Joaquim R. R. A. Martins, Andrew Ning |
title_full_unstemmed | Engineering design optimization Joaquim R. R. A. Martins, Andrew Ning |
title_short | Engineering design optimization |
title_sort | engineering design optimization |
topic | Engineering design / Mathematical models Mathematical optimization Multidisciplinary design optimization Conception technique / Modèles mathématiques Optimisation mathématique Optimisation multidisciplinaire (Conception technique) MATHEMATICS / Optimization bisacsh Engineering design / Mathematical models fast Mathematical optimization fast Multidisciplinary design optimization fast |
topic_facet | Engineering design / Mathematical models Mathematical optimization Multidisciplinary design optimization Conception technique / Modèles mathématiques Optimisation mathématique Optimisation multidisciplinaire (Conception technique) MATHEMATICS / Optimization |
work_keys_str_mv | AT martinsjoaquimrra engineeringdesignoptimization AT ningandrew engineeringdesignoptimization |