Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048653050 | ||
003 | DE-604 | ||
005 | 20241024 | ||
007 | cr|uuu---uuuuu | ||
008 | 230117s2022 gw a||| om||| 00||| eng d | ||
015 | |a 23,O02 |2 dnb | ||
016 | 7 | |a 127735846X |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-211751 |2 urn | |
035 | |a (OCoLC)1362878804 | ||
035 | |a (DE-599)DNB127735846X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 1\p |a 616.075 |2 23ksdnb | ||
084 | |8 2\p |a 610 |2 23sdnb | ||
100 | 1 | |a Denck, Jonas |0 (DE-588)1278358439 |4 aut | |
245 | 1 | 0 | |a Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |c vorgelegt von Jonas Denck |
246 | 1 | 3 | |a Workflow Verbesserungen in der Magnetresonanztomographie durch Maschinelles Lernen |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg |c 2022 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2022 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Arbeitsablauf |0 (DE-588)4124943-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kernspintomografie |0 (DE-588)4120806-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a machine learning | ||
653 | |a magnetic resonance imaging | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Kernspintomografie |0 (DE-588)4120806-7 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 3 | |a Arbeitsablauf |0 (DE-588)4124943-4 |D s |
689 | 0 | 4 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-211751 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/127735846X/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/21175 |x Verlag |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,31961 |d 20230107 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,96776 |d 20230107 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20230106 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034027796 |
Datensatz im Suchindex
_version_ | 1816446276459298816 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Denck, Jonas |
author_GND | (DE-588)1278358439 |
author_facet | Denck, Jonas |
author_role | aut |
author_sort | Denck, Jonas |
author_variant | j d jd |
building | Verbundindex |
bvnumber | BV048653050 |
collection | ebook |
ctrlnum | (OCoLC)1362878804 (DE-599)DNB127735846X |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV048653050</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241024</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230117s2022 gw a||| om||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,O02</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">127735846X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-211751</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1362878804</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB127735846X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.075</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Denck, Jonas</subfield><subfield code="0">(DE-588)1278358439</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging</subfield><subfield code="c">vorgelegt von Jonas Denck</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Workflow Verbesserungen in der Magnetresonanztomographie durch Maschinelles Lernen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2022</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Arbeitsablauf</subfield><subfield code="0">(DE-588)4124943-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernspintomografie</subfield><subfield code="0">(DE-588)4120806-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic resonance imaging</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kernspintomografie</subfield><subfield code="0">(DE-588)4120806-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Arbeitsablauf</subfield><subfield code="0">(DE-588)4124943-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-211751</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/127735846X/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/21175</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,31961</subfield><subfield code="d">20230107</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,96776</subfield><subfield code="d">20230107</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20230106</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034027796</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048653050 |
illustrated | Illustrated |
index_date | 2024-07-03T21:20:23Z |
indexdate | 2024-11-22T17:56:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034027796 |
oclc_num | 1362878804 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg |
record_format | marc |
spelling | Denck, Jonas (DE-588)1278358439 aut Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging vorgelegt von Jonas Denck Workflow Verbesserungen in der Magnetresonanztomographie durch Maschinelles Lernen Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg 2022 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg 2022 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Arbeitsablauf (DE-588)4124943-4 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf Kernspintomografie (DE-588)4120806-7 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf machine learning magnetic resonance imaging (DE-588)4113937-9 Hochschulschrift gnd-content Kernspintomografie (DE-588)4120806-7 s Maschinelles Lernen (DE-588)4193754-5 s Optimierung (DE-588)4043664-0 s Arbeitsablauf (DE-588)4124943-4 s Deep learning (DE-588)1135597375 s DE-604 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-211751 Resolving-System kostenfrei Volltext https://d-nb.info/127735846X/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://open.fau.de/handle/openfau/21175 Verlag kostenfrei Volltext 1\p emakn 0,31961 20230107 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,96776 20230107 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20230106 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Denck, Jonas Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging Arbeitsablauf (DE-588)4124943-4 gnd Deep learning (DE-588)1135597375 gnd Optimierung (DE-588)4043664-0 gnd Kernspintomografie (DE-588)4120806-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4124943-4 (DE-588)1135597375 (DE-588)4043664-0 (DE-588)4120806-7 (DE-588)4193754-5 (DE-588)4113937-9 |
title | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |
title_alt | Workflow Verbesserungen in der Magnetresonanztomographie durch Maschinelles Lernen |
title_auth | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |
title_exact_search | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |
title_exact_search_txtP | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |
title_full | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging vorgelegt von Jonas Denck |
title_fullStr | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging vorgelegt von Jonas Denck |
title_full_unstemmed | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging vorgelegt von Jonas Denck |
title_short | Machine Learning-based Workflow Enhancements in Magnetic Resonance Imaging |
title_sort | machine learning based workflow enhancements in magnetic resonance imaging |
topic | Arbeitsablauf (DE-588)4124943-4 gnd Deep learning (DE-588)1135597375 gnd Optimierung (DE-588)4043664-0 gnd Kernspintomografie (DE-588)4120806-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Arbeitsablauf Deep learning Optimierung Kernspintomografie Maschinelles Lernen Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-211751 https://d-nb.info/127735846X/34 https://open.fau.de/handle/openfau/21175 |
work_keys_str_mv | AT denckjonas machinelearningbasedworkflowenhancementsinmagneticresonanceimaging AT denckjonas workflowverbesserungenindermagnetresonanztomographiedurchmaschinelleslernen |