Large-scale convex optimization: algorithms & analyses via monotone operators
Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schlagworte: | |
Zusammenfassung: | Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms. |
Beschreibung: | xiv, 303 Seiten Diagramme |
ISBN: | 9781009160858 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048640750 | ||
003 | DE-604 | ||
005 | 20230920 | ||
007 | t | ||
008 | 230110s2023 |||| |||| 00||| eng d | ||
020 | |a 9781009160858 |c hardback |9 978-1-00-916085-8 | ||
035 | |a (OCoLC)1357534601 | ||
035 | |a (DE-599)BVBBV048640750 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-188 | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Ryu, Ernest K. |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1280001011 |4 aut | |
245 | 1 | 0 | |a Large-scale convex optimization |b algorithms & analyses via monotone operators |c Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
264 | 4 | |c © 2023 | |
300 | |a xiv, 303 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
505 | 8 | |a A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators | |
520 | 3 | |a Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms. | |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Menge |0 (DE-588)4165212-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monotoner Operator |0 (DE-588)4207161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Funktion |0 (DE-588)4139679-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
653 | |a großskalige konvexe Optimierungsprobleme | ||
653 | 0 | |a Convex sets | |
653 | 0 | |a Convex functions | |
653 | 0 | |a Mathematical optimization | |
653 | 0 | |a Monotone operators | |
653 | 0 | |a Operator theory | |
689 | 0 | 0 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | 1 | |a Konvexe Menge |0 (DE-588)4165212-5 |D s |
689 | 0 | 2 | |a Konvexe Funktion |0 (DE-588)4139679-0 |D s |
689 | 0 | 3 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 4 | |a Monotoner Operator |0 (DE-588)4207161-6 |D s |
689 | 0 | 5 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yin, Wotao |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)103849625X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-19106-7 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034015681 |
Datensatz im Suchindex
_version_ | 1804184782847868928 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh |
author_GND | (DE-588)1280001011 (DE-588)103849625X |
author_facet | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh |
author_role | aut aut |
author_sort | Ryu, Ernest K. ca. 20./21. Jh |
author_variant | e k r ek ekr w y wy |
building | Verbundindex |
bvnumber | BV048640750 |
classification_rvk | SK 870 |
contents | A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators |
ctrlnum | (OCoLC)1357534601 (DE-599)BVBBV048640750 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03244nam a2200553 c 4500</leader><controlfield tag="001">BV048640750</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230920 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">230110s2023 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009160858</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-00-916085-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1357534601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048640750</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryu, Ernest K.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1280001011</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Large-scale convex optimization</subfield><subfield code="b">algorithms & analyses via monotone operators</subfield><subfield code="c">Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 303 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monotoner Operator</subfield><subfield code="0">(DE-588)4207161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">großskalige konvexe Optimierungsprobleme</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Convex sets</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Convex functions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Monotone operators</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexe Menge</subfield><subfield code="0">(DE-588)4165212-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Konvexe Funktion</subfield><subfield code="0">(DE-588)4139679-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Monotoner Operator</subfield><subfield code="0">(DE-588)4207161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Wotao</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)103849625X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-19106-7</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034015681</subfield></datafield></record></collection> |
id | DE-604.BV048640750 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:17:32Z |
indexdate | 2024-07-10T09:44:49Z |
institution | BVB |
isbn | 9781009160858 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034015681 |
oclc_num | 1357534601 |
open_access_boolean | |
owner | DE-11 DE-188 |
owner_facet | DE-11 DE-188 |
physical | xiv, 303 Seiten Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Ryu, Ernest K. ca. 20./21. Jh. Verfasser (DE-588)1280001011 aut Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles) Cambridge Cambridge University Press 2023 © 2023 xiv, 303 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms. Modellierung (DE-588)4170297-9 gnd rswk-swf Konvexe Menge (DE-588)4165212-5 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Monotoner Operator (DE-588)4207161-6 gnd rswk-swf Konvexe Funktion (DE-588)4139679-0 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf großskalige konvexe Optimierungsprobleme Convex sets Convex functions Mathematical optimization Monotone operators Operator theory Modellierung (DE-588)4170297-9 s Konvexe Menge (DE-588)4165212-5 s Konvexe Funktion (DE-588)4139679-0 s Optimierung (DE-588)4043664-0 s Monotoner Operator (DE-588)4207161-6 s Operatortheorie (DE-588)4075665-8 s DE-604 Yin, Wotao ca. 20./21. Jh. Verfasser (DE-588)103849625X aut Erscheint auch als Online-Ausgabe 978-1-009-19106-7 |
spellingShingle | Ryu, Ernest K. ca. 20./21. Jh Yin, Wotao ca. 20./21. Jh Large-scale convex optimization algorithms & analyses via monotone operators A unified analysis of first-order optimization methods, including parallel-distributed algorithms, using monotone operators Modellierung (DE-588)4170297-9 gnd Konvexe Menge (DE-588)4165212-5 gnd Operatortheorie (DE-588)4075665-8 gnd Monotoner Operator (DE-588)4207161-6 gnd Konvexe Funktion (DE-588)4139679-0 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4170297-9 (DE-588)4165212-5 (DE-588)4075665-8 (DE-588)4207161-6 (DE-588)4139679-0 (DE-588)4043664-0 |
title | Large-scale convex optimization algorithms & analyses via monotone operators |
title_auth | Large-scale convex optimization algorithms & analyses via monotone operators |
title_exact_search | Large-scale convex optimization algorithms & analyses via monotone operators |
title_exact_search_txtP | Large-scale convex optimization algorithms & analyses via monotone operators |
title_full | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles) |
title_fullStr | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles) |
title_full_unstemmed | Large-scale convex optimization algorithms & analyses via monotone operators Ernest K. Ryu (Seoul National University), Wotao Yin (University of California, Los Angeles) |
title_short | Large-scale convex optimization |
title_sort | large scale convex optimization algorithms analyses via monotone operators |
title_sub | algorithms & analyses via monotone operators |
topic | Modellierung (DE-588)4170297-9 gnd Konvexe Menge (DE-588)4165212-5 gnd Operatortheorie (DE-588)4075665-8 gnd Monotoner Operator (DE-588)4207161-6 gnd Konvexe Funktion (DE-588)4139679-0 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Modellierung Konvexe Menge Operatortheorie Monotoner Operator Konvexe Funktion Optimierung |
work_keys_str_mv | AT ryuernestk largescaleconvexoptimizationalgorithmsanalysesviamonotoneoperators AT yinwotao largescaleconvexoptimizationalgorithmsanalysesviamonotoneoperators |