Cybersecurity in intelligent networking systems:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2023
|
Online-Zugang: | FHD01 FHI01 HFA01 Volltext Volltext |
Beschreibung: | 1 Online-Ressource (xvi, 128 Seiten) Illustrationen, Diagramme |
ISBN: | 9781119784128 9781119784135 9781119784104 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048639990 | ||
003 | DE-604 | ||
005 | 20240416 | ||
007 | cr|uuu---uuuuu | ||
008 | 230110s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781119784128 |9 978-1-119-78412-8 | ||
020 | |a 9781119784135 |9 9781119784135 | ||
020 | |a 9781119784104 |9 9781119784104 | ||
024 | 7 | |a 10.1002/9781119784135 |2 doi | |
035 | |a (OCoLC)1357533787 | ||
035 | |a (DE-599)BVBBV048639990 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-573 |a DE-Aug4 | ||
100 | 1 | |a Xu, Shengjie |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1290580650 |4 aut | |
245 | 1 | 0 | |a Cybersecurity in intelligent networking systems |c Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA) |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2023 | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xvi, 128 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi-supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data-Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation | |
505 | 8 | |a 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit-learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy-Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL-KDD -- 1.4.2 UNSW-NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes | |
505 | 8 | |a 2.3.4 Reinforcement Learning for Penetration Test -- 2.4 Case Study: Reinforcement Learning for Automated Post-breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q-Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre-processing -- 3.3.2.2 Model Learning | |
505 | 8 | |a 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries | |
700 | 1 | |a Qian, Yi |e Verfasser |4 aut | |
700 | 1 | |a Hu, Rose Qingyang |e Verfasser |0 (DE-588)1170082777 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-119-78391-6 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/9944078 |x Aggregator |3 Volltext |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-35-WEL |a ZDB-35-WIC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034014941 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=7130612 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/book/9944078 |l FHI01 |p ZDB-35-WEL |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135 |l HFA01 |p ZDB-35-WIC |q FHA_PDA_WIC_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184781425999872 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Xu, Shengjie ca. 20./21. Jh Qian, Yi Hu, Rose Qingyang |
author_GND | (DE-588)1290580650 (DE-588)1170082777 |
author_facet | Xu, Shengjie ca. 20./21. Jh Qian, Yi Hu, Rose Qingyang |
author_role | aut aut aut |
author_sort | Xu, Shengjie ca. 20./21. Jh |
author_variant | s x sx y q yq r q h rq rqh |
building | Verbundindex |
bvnumber | BV048639990 |
collection | ZDB-30-PQE ZDB-35-WEL ZDB-35-WIC |
contents | Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi-supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data-Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit-learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy-Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL-KDD -- 1.4.2 UNSW-NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes 2.3.4 Reinforcement Learning for Penetration Test -- 2.4 Case Study: Reinforcement Learning for Automated Post-breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q-Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre-processing -- 3.3.2.2 Model Learning 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries |
ctrlnum | (OCoLC)1357533787 (DE-599)BVBBV048639990 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04390nmm a2200457 c 4500</leader><controlfield tag="001">BV048639990</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240416 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230110s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119784128</subfield><subfield code="9">978-1-119-78412-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119784135</subfield><subfield code="9">9781119784135</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119784104</subfield><subfield code="9">9781119784104</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/9781119784135</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1357533787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048639990</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-Aug4</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Shengjie</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1290580650</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cybersecurity in intelligent networking systems</subfield><subfield code="c">Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 128 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi-supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data-Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit-learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy-Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL-KDD -- 1.4.2 UNSW-NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.4 Reinforcement Learning for Penetration Test -- 2.4 Case Study: Reinforcement Learning for Automated Post-breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q-Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre-processing -- 3.3.2.2 Model Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Yi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Rose Qingyang</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1170082777</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-119-78391-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9944078</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-35-WEL</subfield><subfield code="a">ZDB-35-WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034014941</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=7130612</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9944078</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135</subfield><subfield code="l">HFA01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FHA_PDA_WIC_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048639990 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:17:22Z |
indexdate | 2024-07-10T09:44:48Z |
institution | BVB |
isbn | 9781119784128 9781119784135 9781119784104 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034014941 |
oclc_num | 1357533787 |
open_access_boolean | |
owner | DE-1050 DE-573 DE-Aug4 |
owner_facet | DE-1050 DE-573 DE-Aug4 |
physical | 1 Online-Ressource (xvi, 128 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-35-WEL ZDB-35-WIC ZDB-30-PQE FHD01_PQE_Kauf ZDB-35-WIC FHA_PDA_WIC_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley |
record_format | marc |
spelling | Xu, Shengjie ca. 20./21. Jh. Verfasser (DE-588)1290580650 aut Cybersecurity in intelligent networking systems Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA) Hoboken, NJ Wiley 2023 © 2023 1 Online-Ressource (xvi, 128 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi-supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data-Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit-learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy-Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL-KDD -- 1.4.2 UNSW-NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes 2.3.4 Reinforcement Learning for Penetration Test -- 2.4 Case Study: Reinforcement Learning for Automated Post-breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q-Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre-processing -- 3.3.2.2 Model Learning 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries Qian, Yi Verfasser aut Hu, Rose Qingyang Verfasser (DE-588)1170082777 aut Erscheint auch als Druck-Ausgabe, hardback 978-1-119-78391-6 https://ieeexplore.ieee.org/book/9944078 Aggregator Volltext https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Xu, Shengjie ca. 20./21. Jh Qian, Yi Hu, Rose Qingyang Cybersecurity in intelligent networking systems Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Cybersecurity in the Era of Artificial Intelligence -- 1.1 Artificial Intelligence for Cybersecurity -- 1.1.1 Artificial Intelligence -- 1.1.2 Machine Learning -- 1.1.2.1 Supervised Learning -- 1.1.2.2 Unsupervised Learning -- 1.1.2.3 Semi-supervised Learning -- 1.1.2.4 Reinforcement Learning -- 1.1.3 Data-Driven Workflow for Cybersecurity -- 1.2 Key Areas and Challenges -- 1.2.1 Anomaly Detection -- 1.2.2 Trustworthy Artificial Intelligence -- 1.2.3 Privacy Preservation 1.3 Toolbox to Build Secure and Intelligent Systems -- 1.3.1 Machine Learning and Deep Learning -- 1.3.1.1 NumPy -- 1.3.1.2 SciPy -- 1.3.1.3 Scikit-learn -- 1.3.1.4 PyTorch -- 1.3.1.5 TensorFlow -- 1.3.2 Privacy-Preserving Machine Learning -- 1.3.2.1 Syft -- 1.3.2.2 TensorFlow Federated -- 1.3.2.3 TensorFlow Privacy -- 1.3.3 Adversarial Machine Learning -- 1.3.3.1 SecML and SecML Malware -- 1.3.3.2 Foolbox -- 1.3.3.3 CleverHans -- 1.3.3.4 Counterfit -- 1.3.3.5 MintNV -- 1.4 Data Repositories for Cybersecurity Research -- 1.4.1 NSL-KDD -- 1.4.2 UNSW-NB15 -- 1.4.3 EMBER -- 1.5 Summary -- Notes 2.3.4 Reinforcement Learning for Penetration Test -- 2.4 Case Study: Reinforcement Learning for Automated Post-breach Penetration Test -- 2.4.1 Literature Review -- 2.4.2 Research Idea -- 2.4.3 Training Agent Using Deep Q-Learning -- 2.5 Summary -- References -- Chapter 3 Edge Computing and Secure Edge Intelligence -- 3.1 Edge Computing -- 3.2 Key Advances in Edge Computing -- 3.2.1 Security -- 3.2.2 Reliability -- 3.2.3 Survivability -- 3.3 Secure Edge Intelligence -- 3.3.1 Background and Motivation -- 3.3.2 Design of Detection Module -- 3.3.2.1 Data Pre-processing -- 3.3.2.2 Model Learning 3.3.2.3 Model Updating -- 3.3.3 Challenges Against Poisoning Attacks -- 3.4 Summary -- References -- Chapter 4 Edge Intelligence for Intrusion Detection -- 4.1 Edge Cyberinfrastructure -- 4.2 Edge AI Engine -- 4.2.1 Feature Engineering -- 4.2.2 Model Learning -- 4.2.3 Model Update -- 4.2.4 Predictive Analytics -- 4.3 Threat Intelligence -- 4.4 Preliminary Study -- 4.4.1 Dataset -- 4.4.2 Environmental Setup -- 4.4.3 Performance Evaluation -- 4.4.3.1 Computational Efficiency -- 4.4.3.2 Prediction Accuracy -- 4.5 Summary -- References -- Chapter 5 Robust Intrusion Detection -- 5.1 Preliminaries |
title | Cybersecurity in intelligent networking systems |
title_auth | Cybersecurity in intelligent networking systems |
title_exact_search | Cybersecurity in intelligent networking systems |
title_exact_search_txtP | Cybersecurity in intelligent networking systems |
title_full | Cybersecurity in intelligent networking systems Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA) |
title_fullStr | Cybersecurity in intelligent networking systems Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA) |
title_full_unstemmed | Cybersecurity in intelligent networking systems Shengjie Xu (San Diego State University, USA), Yi Qian (University of Nebraska-Lincoln, USA), Rose Qingyang Hu (Utah State University, USA) |
title_short | Cybersecurity in intelligent networking systems |
title_sort | cybersecurity in intelligent networking systems |
url | https://ieeexplore.ieee.org/book/9944078 https://onlinelibrary.wiley.com/doi/book/10.1002/9781119784135 |
work_keys_str_mv | AT xushengjie cybersecurityinintelligentnetworkingsystems AT qianyi cybersecurityinintelligentnetworkingsystems AT huroseqingyang cybersecurityinintelligentnetworkingsystems |