Financial Mathematics: A Comprehensive Treatment in Continuous Time Volume II.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Milton
CRC Press LLC
2022
|
Schriftenreihe: | Textbooks in Mathematics Ser
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | 1 Online-Ressource (511 Seiten) |
ISBN: | 9780429889097 9781138603639 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048632780 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230105s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780429889097 |q electronic bk. |9 978-0-429-88909-7 | ||
020 | |a 9781138603639 |9 978-1-138-60363-9 | ||
035 | |a (ZDB-30-PQE)EBC7144681 | ||
035 | |a (ZDB-30-PAD)EBC7144681 | ||
035 | |a (ZDB-89-EBL)EBL7144681 | ||
035 | |a (OCoLC)1351752074 | ||
035 | |a (DE-599)BVBBV048632780 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Campolieti, Giuseppe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Financial Mathematics |b A Comprehensive Treatment in Continuous Time Volume II. |
264 | 1 | |a Milton |b CRC Press LLC |c 2022 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (511 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Textbooks in Mathematics Ser | |
505 | 8 | |a Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Preface -- Authors -- I. Stochastic Calculus with Brownian Motion -- 1. One-Dimensional Brownian Motion and Related Processes -- 1.1. Multivariate Normal Distributions -- 1.1.1. Multivariate Normal Distribution -- 1.1.2. Conditional Normal Distributions -- 1.2. Standard Brownian Motion -- 1.2.1. One-Dimensional Symmetric Random Walk -- 1.2.2. Formal Definition and Basic Properties of Brownian Motion -- 1.2.3. Multivariate Distribution of Brownian Motion -- 1.2.4. The Markov Property and the Transition PDF -- 1.2.5. Quadratic Variation and Nondifferentiability of Paths -- 1.3. Some Processes Derived from Brownian Motion -- 1.3.1. Drifted Brownian Motion -- 1.3.2. Geometric Brownian Motion -- 1.3.3. Processes related by a monotonic mapping -- 1.3.4. Brownian Bridge -- 1.3.5. Gaussian Processes -- 1.4. First Hitting Times and Maximum and Minimum of Brownian Motion -- 1.4.1. The Reflection Principle: Standard Brownian Motion -- 1.4.2. Translated and Scaled Driftless Brownian Motion -- 1.4.3. Brownian Motion with Drift -- 1.5. Exercises -- 2. Introduction to Continuous-Time Stochastic Calculus -- 2.1. The Riemann Integral of Brownian Motion -- 2.1.1. The Riemann Integral -- 2.1.2. The Integral of a Brownian Path -- 2.2. The Riemann-Stieltjes Integral of Brownian Motion -- 2.2.1. The Riemann-Stieltjes Integral -- 2.2.2. Integrals w.r.t. Brownian Motion: Preliminary Discussion -- 2.3. The Itô Integral and Its Basic Properties -- 2.3.1. The Itô Integral for Simple Processes -- 2.3.2. The Itô Integral for General Processes -- 2.4. Itô Processes and Their Properties -- 2.4.1. Gaussian Processes Generated by Itô Integrals -- 2.4.2. Itô Processes -- 2.4.3. Quadratic and Co-Variation of Itô Processes | |
505 | 8 | |a 2.5. Itô's Formula for Functions of BM and Itô Processes -- 2.5.1. Itô's Formula for Functions of BM -- 2.5.2. An "Antiderivative" Formula for Evaluating Itô Integrals -- 2.5.3. Itô's Formula for Itô Processes -- 2.6. Stochastic Differential Equations -- 2.6.1. Solutions to Linear SDEs -- 2.6.2. Existence and Uniqueness of a Strong Solution to an SDE -- 2.7. The Markov Property, Martingales, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.7.1. Forward Kolmogorov PDE -- 2.7.2. Transition CDF/PDF for Time-Homogeneous Diffusions -- 2.8. Radon-Nikodym Derivative Process and Girsanov's Theorem -- 2.8.1. Some Applications of Girsanov's Theorem -- 2.9. Brownian Martingale Representation Theorem -- 2.10. Stochastic Calculus for Multidimensional BM -- 2.10.1. The Itô Integral and Itô's Formula for Multiple Processes on Multidimensional BM -- 2.10.2. Multidimensional SDEs, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.10.3. Girsanov's Theorem for Multidimensional BM -- 2.10.4. Martingale Representation Theorem for Multidimensional BM -- 2.11. Exercises -- II. Continuous-Time Modelling -- 3. Risk-Neutral Pricing in the (B, S) Economy: One Underlying Stock -- 3.1. From the CRR Model to the BSM Model -- 3.1.1. Portfolio Strategies in the Binomial Tree Model -- 3.1.2. The Cox-Ross-Rubinstein Model and its Continuous-Time Limit -- 3.2. Replication (Hedging) and Derivative Pricing in the Simplest Black-Scholes Economy -- 3.2.1. Pricing Standard European Calls and Puts -- 3.2.2. Hedging Standard European Calls and Puts -- 3.2.3. Europeans with Piecewise Linear Payoffs -- 3.2.4. Power Options -- 3.2.5. Dividend Paying Stock -- 3.2.6. Option Pricing with the Stock Numéraire -- 3.3. Forward Starting, Chooser, and Compound Options -- 3.4. Some European-Style Path-Dependent Derivatives -- 3.4.1. Risk-Neutral Pricing under GBM. | |
505 | 8 | |a 3.4.2. Pricing Single Barrier Options -- 3.4.3. Pricing Lookback Options -- 3.5. Structural Credit Risk Models -- 3.5.1. The Merton Model -- 3.5.2. The Black-Cox Model -- 3.6. Exercises -- 4. Risk-Neutral Pricing in a Multi-Asset Economy -- 4.1. General Multi-Asset Market Model: Replication and Risk-Neutral Pricing -- 4.2. Equivalent Martingale Measures: Derivative Pricing with General Numéraire Assets -- 4.3. Black-Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives -- 4.3.1. Standard European Option Pricing for Multi-Stock GBM -- 4.3.2. Explicit Pricing Formulae for the GBM Model -- 4.3.3. Cross-Currency Option Valuation -- 4.3.4. Option Valuation with General Numéraire Assets -- 4.4. Exercises -- 5. American Options -- 5.1. Basic Properties of Early-Exercise Options -- 5.2. Arbitrage-Free Pricing of American Options -- 5.2.1. Optimal Stopping Formulation and Early-Exercise Boundary -- 5.2.2. The Smooth Pasting Condition -- 5.2.3. Put-Call Symmetry Relation -- 5.2.4. Dynamic Programming Approach for Bermudan Options -- 5.3. Perpetual American Options -- 5.3.1. Pricing a Perpetual Put Option -- 5.3.2. Pricing a Perpetual Call Option -- 5.4. Finite-Expiration American Options -- 5.4.1. The PDE Formulation -- 5.4.2. The Integral Equation Formulation -- 5.5. Exercises -- 6. Interest-Rate Modelling and Derivative Pricing -- 6.1. Basic Fixed Income Instruments -- 6.1.1. Bonds -- 6.1.2. Forward Rates -- 6.1.3. Arbitrage-Free Pricing -- 6.1.4. Fixed Income Derivatives -- 6.2. Single-Factor Models -- 6.2.1. Diffusion Models for the Short Rate Process -- 6.2.2. PDE for the Zero-Coupon Bond Value -- 6.2.3. Affine Term Structure Models -- 6.2.4. The Ho-Lee Model -- 6.2.5. The Vasiček Model -- 6.2.6. The Cox-Ingersoll-Ross Model -- 6.3. Heath-Jarrow-Morton Formulation -- 6.3.1. HJM under Risk-Neutral Measure | |
505 | 8 | |a 6.3.2. Relationship between HJM and Affine Yield Models -- 6.4. Multifactor Affine Term Structure Models -- 6.4.1. Gaussian Multifactor Models -- 6.4.2. Equivalent Classes of Affine Models -- 6.5. Pricing Derivatives under Forward Measures -- 6.5.1. Forward Measures -- 6.5.2. Pricing Stock Options under Stochastic Interest Rates -- 6.5.3. Pricing Options on Zero-Coupon Bonds -- 6.6. LIBOR Model -- 6.6.1. LIBOR Rates -- 6.6.2. The Brace-Gatarek-Musiela Model of LIBOR Rates -- 6.6.3. Pricing Caplets, Caps, and Swaps -- 6.7. Exercises -- 7. Alternative Models of Asset Price Dynamics -- 7.1. Characteristic Functions -- 7.1.1. Definition and Properties -- 7.1.2. Recovering the Distribution Function -- 7.1.3. Pricing Standard European Options -- 7.1.4. The Carr-Madan Method for Pricing Vanilla Options -- 7.2. Stochastic Volatility Diffusion Models -- 7.2.1. Local Volatility Models -- 7.2.2. Constant Elasticity of Variance Model -- 7.3. The Heston model -- 7.3.1. Solution to the Ricatti Equation -- 7.3.2. Implied Volatility for the Heston Model -- 7.4. Models with Jumps -- 7.4.1. The Poisson Process -- 7.4.2. Jump Diffusion Models with a Compound Poisson Component -- 7.4.3. The Merton Jump Diffusion Model -- 7.4.4. Characteristic Function for a Jump Diffusion Process -- 7.4.5. Change of Measure for Jump Diffusion Processes -- 7.4.6. The Variance Gamma Model -- 7.5. Exercises -- A. Essentials of General Probability Theory -- A.1. Random Variables and Lebesgue Integration -- A.2. Multidimensional Lebesgue Integration -- A.3. Multiple Random Variables and Joint Distributions -- A.4. Conditioning -- A.5. Changing Probability Measures -- B. Some Useful Integral (Expectation) Identities and Symmetry Properties of Normal Random Variables -- C. Answers and Hints to Exercises -- C.1. Chapter 1 -- C.2. Chapter 2 -- C.3. Chapter 3 -- C.4. Chapter 4 -- C.5. Chapter 5 | |
505 | 8 | |a C.6. Chapter 6 -- C.7. Chapter 7 -- D. Glossary of Symbols and Abbreviations -- References -- Index | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Makarov, Roman N. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Campolieti, Giuseppe |t Financial Mathematics |d Milton : CRC Press LLC,c2022 |z 9781138603639 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034007798 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7144681 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184766885396480 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campolieti, Giuseppe |
author_facet | Campolieti, Giuseppe |
author_role | aut |
author_sort | Campolieti, Giuseppe |
author_variant | g c gc |
building | Verbundindex |
bvnumber | BV048632780 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Preface -- Authors -- I. Stochastic Calculus with Brownian Motion -- 1. One-Dimensional Brownian Motion and Related Processes -- 1.1. Multivariate Normal Distributions -- 1.1.1. Multivariate Normal Distribution -- 1.1.2. Conditional Normal Distributions -- 1.2. Standard Brownian Motion -- 1.2.1. One-Dimensional Symmetric Random Walk -- 1.2.2. Formal Definition and Basic Properties of Brownian Motion -- 1.2.3. Multivariate Distribution of Brownian Motion -- 1.2.4. The Markov Property and the Transition PDF -- 1.2.5. Quadratic Variation and Nondifferentiability of Paths -- 1.3. Some Processes Derived from Brownian Motion -- 1.3.1. Drifted Brownian Motion -- 1.3.2. Geometric Brownian Motion -- 1.3.3. Processes related by a monotonic mapping -- 1.3.4. Brownian Bridge -- 1.3.5. Gaussian Processes -- 1.4. First Hitting Times and Maximum and Minimum of Brownian Motion -- 1.4.1. The Reflection Principle: Standard Brownian Motion -- 1.4.2. Translated and Scaled Driftless Brownian Motion -- 1.4.3. Brownian Motion with Drift -- 1.5. Exercises -- 2. Introduction to Continuous-Time Stochastic Calculus -- 2.1. The Riemann Integral of Brownian Motion -- 2.1.1. The Riemann Integral -- 2.1.2. The Integral of a Brownian Path -- 2.2. The Riemann-Stieltjes Integral of Brownian Motion -- 2.2.1. The Riemann-Stieltjes Integral -- 2.2.2. Integrals w.r.t. Brownian Motion: Preliminary Discussion -- 2.3. The Itô Integral and Its Basic Properties -- 2.3.1. The Itô Integral for Simple Processes -- 2.3.2. The Itô Integral for General Processes -- 2.4. Itô Processes and Their Properties -- 2.4.1. Gaussian Processes Generated by Itô Integrals -- 2.4.2. Itô Processes -- 2.4.3. Quadratic and Co-Variation of Itô Processes 2.5. Itô's Formula for Functions of BM and Itô Processes -- 2.5.1. Itô's Formula for Functions of BM -- 2.5.2. An "Antiderivative" Formula for Evaluating Itô Integrals -- 2.5.3. Itô's Formula for Itô Processes -- 2.6. Stochastic Differential Equations -- 2.6.1. Solutions to Linear SDEs -- 2.6.2. Existence and Uniqueness of a Strong Solution to an SDE -- 2.7. The Markov Property, Martingales, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.7.1. Forward Kolmogorov PDE -- 2.7.2. Transition CDF/PDF for Time-Homogeneous Diffusions -- 2.8. Radon-Nikodym Derivative Process and Girsanov's Theorem -- 2.8.1. Some Applications of Girsanov's Theorem -- 2.9. Brownian Martingale Representation Theorem -- 2.10. Stochastic Calculus for Multidimensional BM -- 2.10.1. The Itô Integral and Itô's Formula for Multiple Processes on Multidimensional BM -- 2.10.2. Multidimensional SDEs, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.10.3. Girsanov's Theorem for Multidimensional BM -- 2.10.4. Martingale Representation Theorem for Multidimensional BM -- 2.11. Exercises -- II. Continuous-Time Modelling -- 3. Risk-Neutral Pricing in the (B, S) Economy: One Underlying Stock -- 3.1. From the CRR Model to the BSM Model -- 3.1.1. Portfolio Strategies in the Binomial Tree Model -- 3.1.2. The Cox-Ross-Rubinstein Model and its Continuous-Time Limit -- 3.2. Replication (Hedging) and Derivative Pricing in the Simplest Black-Scholes Economy -- 3.2.1. Pricing Standard European Calls and Puts -- 3.2.2. Hedging Standard European Calls and Puts -- 3.2.3. Europeans with Piecewise Linear Payoffs -- 3.2.4. Power Options -- 3.2.5. Dividend Paying Stock -- 3.2.6. Option Pricing with the Stock Numéraire -- 3.3. Forward Starting, Chooser, and Compound Options -- 3.4. Some European-Style Path-Dependent Derivatives -- 3.4.1. Risk-Neutral Pricing under GBM. 3.4.2. Pricing Single Barrier Options -- 3.4.3. Pricing Lookback Options -- 3.5. Structural Credit Risk Models -- 3.5.1. The Merton Model -- 3.5.2. The Black-Cox Model -- 3.6. Exercises -- 4. Risk-Neutral Pricing in a Multi-Asset Economy -- 4.1. General Multi-Asset Market Model: Replication and Risk-Neutral Pricing -- 4.2. Equivalent Martingale Measures: Derivative Pricing with General Numéraire Assets -- 4.3. Black-Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives -- 4.3.1. Standard European Option Pricing for Multi-Stock GBM -- 4.3.2. Explicit Pricing Formulae for the GBM Model -- 4.3.3. Cross-Currency Option Valuation -- 4.3.4. Option Valuation with General Numéraire Assets -- 4.4. Exercises -- 5. American Options -- 5.1. Basic Properties of Early-Exercise Options -- 5.2. Arbitrage-Free Pricing of American Options -- 5.2.1. Optimal Stopping Formulation and Early-Exercise Boundary -- 5.2.2. The Smooth Pasting Condition -- 5.2.3. Put-Call Symmetry Relation -- 5.2.4. Dynamic Programming Approach for Bermudan Options -- 5.3. Perpetual American Options -- 5.3.1. Pricing a Perpetual Put Option -- 5.3.2. Pricing a Perpetual Call Option -- 5.4. Finite-Expiration American Options -- 5.4.1. The PDE Formulation -- 5.4.2. The Integral Equation Formulation -- 5.5. Exercises -- 6. Interest-Rate Modelling and Derivative Pricing -- 6.1. Basic Fixed Income Instruments -- 6.1.1. Bonds -- 6.1.2. Forward Rates -- 6.1.3. Arbitrage-Free Pricing -- 6.1.4. Fixed Income Derivatives -- 6.2. Single-Factor Models -- 6.2.1. Diffusion Models for the Short Rate Process -- 6.2.2. PDE for the Zero-Coupon Bond Value -- 6.2.3. Affine Term Structure Models -- 6.2.4. The Ho-Lee Model -- 6.2.5. The Vasiček Model -- 6.2.6. The Cox-Ingersoll-Ross Model -- 6.3. Heath-Jarrow-Morton Formulation -- 6.3.1. HJM under Risk-Neutral Measure 6.3.2. Relationship between HJM and Affine Yield Models -- 6.4. Multifactor Affine Term Structure Models -- 6.4.1. Gaussian Multifactor Models -- 6.4.2. Equivalent Classes of Affine Models -- 6.5. Pricing Derivatives under Forward Measures -- 6.5.1. Forward Measures -- 6.5.2. Pricing Stock Options under Stochastic Interest Rates -- 6.5.3. Pricing Options on Zero-Coupon Bonds -- 6.6. LIBOR Model -- 6.6.1. LIBOR Rates -- 6.6.2. The Brace-Gatarek-Musiela Model of LIBOR Rates -- 6.6.3. Pricing Caplets, Caps, and Swaps -- 6.7. Exercises -- 7. Alternative Models of Asset Price Dynamics -- 7.1. Characteristic Functions -- 7.1.1. Definition and Properties -- 7.1.2. Recovering the Distribution Function -- 7.1.3. Pricing Standard European Options -- 7.1.4. The Carr-Madan Method for Pricing Vanilla Options -- 7.2. Stochastic Volatility Diffusion Models -- 7.2.1. Local Volatility Models -- 7.2.2. Constant Elasticity of Variance Model -- 7.3. The Heston model -- 7.3.1. Solution to the Ricatti Equation -- 7.3.2. Implied Volatility for the Heston Model -- 7.4. Models with Jumps -- 7.4.1. The Poisson Process -- 7.4.2. Jump Diffusion Models with a Compound Poisson Component -- 7.4.3. The Merton Jump Diffusion Model -- 7.4.4. Characteristic Function for a Jump Diffusion Process -- 7.4.5. Change of Measure for Jump Diffusion Processes -- 7.4.6. The Variance Gamma Model -- 7.5. Exercises -- A. Essentials of General Probability Theory -- A.1. Random Variables and Lebesgue Integration -- A.2. Multidimensional Lebesgue Integration -- A.3. Multiple Random Variables and Joint Distributions -- A.4. Conditioning -- A.5. Changing Probability Measures -- B. Some Useful Integral (Expectation) Identities and Symmetry Properties of Normal Random Variables -- C. Answers and Hints to Exercises -- C.1. Chapter 1 -- C.2. Chapter 2 -- C.3. Chapter 3 -- C.4. Chapter 4 -- C.5. Chapter 5 C.6. Chapter 6 -- C.7. Chapter 7 -- D. Glossary of Symbols and Abbreviations -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC7144681 (ZDB-30-PAD)EBC7144681 (ZDB-89-EBL)EBL7144681 (OCoLC)1351752074 (DE-599)BVBBV048632780 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09012nmm a2200445 c 4500</leader><controlfield tag="001">BV048632780</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230105s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429889097</subfield><subfield code="q">electronic bk.</subfield><subfield code="9">978-0-429-88909-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138603639</subfield><subfield code="9">978-1-138-60363-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7144681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7144681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7144681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1351752074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048632780</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campolieti, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Financial Mathematics</subfield><subfield code="b">A Comprehensive Treatment in Continuous Time Volume II.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Milton</subfield><subfield code="b">CRC Press LLC</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (511 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Textbooks in Mathematics Ser</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Preface -- Authors -- I. Stochastic Calculus with Brownian Motion -- 1. One-Dimensional Brownian Motion and Related Processes -- 1.1. Multivariate Normal Distributions -- 1.1.1. Multivariate Normal Distribution -- 1.1.2. Conditional Normal Distributions -- 1.2. Standard Brownian Motion -- 1.2.1. One-Dimensional Symmetric Random Walk -- 1.2.2. Formal Definition and Basic Properties of Brownian Motion -- 1.2.3. Multivariate Distribution of Brownian Motion -- 1.2.4. The Markov Property and the Transition PDF -- 1.2.5. Quadratic Variation and Nondifferentiability of Paths -- 1.3. Some Processes Derived from Brownian Motion -- 1.3.1. Drifted Brownian Motion -- 1.3.2. Geometric Brownian Motion -- 1.3.3. Processes related by a monotonic mapping -- 1.3.4. Brownian Bridge -- 1.3.5. Gaussian Processes -- 1.4. First Hitting Times and Maximum and Minimum of Brownian Motion -- 1.4.1. The Reflection Principle: Standard Brownian Motion -- 1.4.2. Translated and Scaled Driftless Brownian Motion -- 1.4.3. Brownian Motion with Drift -- 1.5. Exercises -- 2. Introduction to Continuous-Time Stochastic Calculus -- 2.1. The Riemann Integral of Brownian Motion -- 2.1.1. The Riemann Integral -- 2.1.2. The Integral of a Brownian Path -- 2.2. The Riemann-Stieltjes Integral of Brownian Motion -- 2.2.1. The Riemann-Stieltjes Integral -- 2.2.2. Integrals w.r.t. Brownian Motion: Preliminary Discussion -- 2.3. The Itô Integral and Its Basic Properties -- 2.3.1. The Itô Integral for Simple Processes -- 2.3.2. The Itô Integral for General Processes -- 2.4. Itô Processes and Their Properties -- 2.4.1. Gaussian Processes Generated by Itô Integrals -- 2.4.2. Itô Processes -- 2.4.3. Quadratic and Co-Variation of Itô Processes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5. Itô's Formula for Functions of BM and Itô Processes -- 2.5.1. Itô's Formula for Functions of BM -- 2.5.2. An "Antiderivative" Formula for Evaluating Itô Integrals -- 2.5.3. Itô's Formula for Itô Processes -- 2.6. Stochastic Differential Equations -- 2.6.1. Solutions to Linear SDEs -- 2.6.2. Existence and Uniqueness of a Strong Solution to an SDE -- 2.7. The Markov Property, Martingales, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.7.1. Forward Kolmogorov PDE -- 2.7.2. Transition CDF/PDF for Time-Homogeneous Diffusions -- 2.8. Radon-Nikodym Derivative Process and Girsanov's Theorem -- 2.8.1. Some Applications of Girsanov's Theorem -- 2.9. Brownian Martingale Representation Theorem -- 2.10. Stochastic Calculus for Multidimensional BM -- 2.10.1. The Itô Integral and Itô's Formula for Multiple Processes on Multidimensional BM -- 2.10.2. Multidimensional SDEs, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.10.3. Girsanov's Theorem for Multidimensional BM -- 2.10.4. Martingale Representation Theorem for Multidimensional BM -- 2.11. Exercises -- II. Continuous-Time Modelling -- 3. Risk-Neutral Pricing in the (B, S) Economy: One Underlying Stock -- 3.1. From the CRR Model to the BSM Model -- 3.1.1. Portfolio Strategies in the Binomial Tree Model -- 3.1.2. The Cox-Ross-Rubinstein Model and its Continuous-Time Limit -- 3.2. Replication (Hedging) and Derivative Pricing in the Simplest Black-Scholes Economy -- 3.2.1. Pricing Standard European Calls and Puts -- 3.2.2. Hedging Standard European Calls and Puts -- 3.2.3. Europeans with Piecewise Linear Payoffs -- 3.2.4. Power Options -- 3.2.5. Dividend Paying Stock -- 3.2.6. Option Pricing with the Stock Numéraire -- 3.3. Forward Starting, Chooser, and Compound Options -- 3.4. Some European-Style Path-Dependent Derivatives -- 3.4.1. Risk-Neutral Pricing under GBM.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2. Pricing Single Barrier Options -- 3.4.3. Pricing Lookback Options -- 3.5. Structural Credit Risk Models -- 3.5.1. The Merton Model -- 3.5.2. The Black-Cox Model -- 3.6. Exercises -- 4. Risk-Neutral Pricing in a Multi-Asset Economy -- 4.1. General Multi-Asset Market Model: Replication and Risk-Neutral Pricing -- 4.2. Equivalent Martingale Measures: Derivative Pricing with General Numéraire Assets -- 4.3. Black-Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives -- 4.3.1. Standard European Option Pricing for Multi-Stock GBM -- 4.3.2. Explicit Pricing Formulae for the GBM Model -- 4.3.3. Cross-Currency Option Valuation -- 4.3.4. Option Valuation with General Numéraire Assets -- 4.4. Exercises -- 5. American Options -- 5.1. Basic Properties of Early-Exercise Options -- 5.2. Arbitrage-Free Pricing of American Options -- 5.2.1. Optimal Stopping Formulation and Early-Exercise Boundary -- 5.2.2. The Smooth Pasting Condition -- 5.2.3. Put-Call Symmetry Relation -- 5.2.4. Dynamic Programming Approach for Bermudan Options -- 5.3. Perpetual American Options -- 5.3.1. Pricing a Perpetual Put Option -- 5.3.2. Pricing a Perpetual Call Option -- 5.4. Finite-Expiration American Options -- 5.4.1. The PDE Formulation -- 5.4.2. The Integral Equation Formulation -- 5.5. Exercises -- 6. Interest-Rate Modelling and Derivative Pricing -- 6.1. Basic Fixed Income Instruments -- 6.1.1. Bonds -- 6.1.2. Forward Rates -- 6.1.3. Arbitrage-Free Pricing -- 6.1.4. Fixed Income Derivatives -- 6.2. Single-Factor Models -- 6.2.1. Diffusion Models for the Short Rate Process -- 6.2.2. PDE for the Zero-Coupon Bond Value -- 6.2.3. Affine Term Structure Models -- 6.2.4. The Ho-Lee Model -- 6.2.5. The Vasiček Model -- 6.2.6. The Cox-Ingersoll-Ross Model -- 6.3. Heath-Jarrow-Morton Formulation -- 6.3.1. HJM under Risk-Neutral Measure</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3.2. Relationship between HJM and Affine Yield Models -- 6.4. Multifactor Affine Term Structure Models -- 6.4.1. Gaussian Multifactor Models -- 6.4.2. Equivalent Classes of Affine Models -- 6.5. Pricing Derivatives under Forward Measures -- 6.5.1. Forward Measures -- 6.5.2. Pricing Stock Options under Stochastic Interest Rates -- 6.5.3. Pricing Options on Zero-Coupon Bonds -- 6.6. LIBOR Model -- 6.6.1. LIBOR Rates -- 6.6.2. The Brace-Gatarek-Musiela Model of LIBOR Rates -- 6.6.3. Pricing Caplets, Caps, and Swaps -- 6.7. Exercises -- 7. Alternative Models of Asset Price Dynamics -- 7.1. Characteristic Functions -- 7.1.1. Definition and Properties -- 7.1.2. Recovering the Distribution Function -- 7.1.3. Pricing Standard European Options -- 7.1.4. The Carr-Madan Method for Pricing Vanilla Options -- 7.2. Stochastic Volatility Diffusion Models -- 7.2.1. Local Volatility Models -- 7.2.2. Constant Elasticity of Variance Model -- 7.3. The Heston model -- 7.3.1. Solution to the Ricatti Equation -- 7.3.2. Implied Volatility for the Heston Model -- 7.4. Models with Jumps -- 7.4.1. The Poisson Process -- 7.4.2. Jump Diffusion Models with a Compound Poisson Component -- 7.4.3. The Merton Jump Diffusion Model -- 7.4.4. Characteristic Function for a Jump Diffusion Process -- 7.4.5. Change of Measure for Jump Diffusion Processes -- 7.4.6. The Variance Gamma Model -- 7.5. Exercises -- A. Essentials of General Probability Theory -- A.1. Random Variables and Lebesgue Integration -- A.2. Multidimensional Lebesgue Integration -- A.3. Multiple Random Variables and Joint Distributions -- A.4. Conditioning -- A.5. Changing Probability Measures -- B. Some Useful Integral (Expectation) Identities and Symmetry Properties of Normal Random Variables -- C. Answers and Hints to Exercises -- C.1. Chapter 1 -- C.2. Chapter 2 -- C.3. Chapter 3 -- C.4. Chapter 4 -- C.5. Chapter 5</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">C.6. Chapter 6 -- C.7. Chapter 7 -- D. Glossary of Symbols and Abbreviations -- References -- Index</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makarov, Roman N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Campolieti, Giuseppe</subfield><subfield code="t">Financial Mathematics</subfield><subfield code="d">Milton : CRC Press LLC,c2022</subfield><subfield code="z">9781138603639</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034007798</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7144681</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048632780 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:16:06Z |
indexdate | 2024-07-10T09:44:33Z |
institution | BVB |
isbn | 9780429889097 9781138603639 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034007798 |
oclc_num | 1351752074 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (511 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press LLC |
record_format | marc |
series2 | Textbooks in Mathematics Ser |
spelling | Campolieti, Giuseppe Verfasser aut Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. Milton CRC Press LLC 2022 ©2023 1 Online-Ressource (511 Seiten) txt rdacontent c rdamedia cr rdacarrier Textbooks in Mathematics Ser Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Preface -- Authors -- I. Stochastic Calculus with Brownian Motion -- 1. One-Dimensional Brownian Motion and Related Processes -- 1.1. Multivariate Normal Distributions -- 1.1.1. Multivariate Normal Distribution -- 1.1.2. Conditional Normal Distributions -- 1.2. Standard Brownian Motion -- 1.2.1. One-Dimensional Symmetric Random Walk -- 1.2.2. Formal Definition and Basic Properties of Brownian Motion -- 1.2.3. Multivariate Distribution of Brownian Motion -- 1.2.4. The Markov Property and the Transition PDF -- 1.2.5. Quadratic Variation and Nondifferentiability of Paths -- 1.3. Some Processes Derived from Brownian Motion -- 1.3.1. Drifted Brownian Motion -- 1.3.2. Geometric Brownian Motion -- 1.3.3. Processes related by a monotonic mapping -- 1.3.4. Brownian Bridge -- 1.3.5. Gaussian Processes -- 1.4. First Hitting Times and Maximum and Minimum of Brownian Motion -- 1.4.1. The Reflection Principle: Standard Brownian Motion -- 1.4.2. Translated and Scaled Driftless Brownian Motion -- 1.4.3. Brownian Motion with Drift -- 1.5. Exercises -- 2. Introduction to Continuous-Time Stochastic Calculus -- 2.1. The Riemann Integral of Brownian Motion -- 2.1.1. The Riemann Integral -- 2.1.2. The Integral of a Brownian Path -- 2.2. The Riemann-Stieltjes Integral of Brownian Motion -- 2.2.1. The Riemann-Stieltjes Integral -- 2.2.2. Integrals w.r.t. Brownian Motion: Preliminary Discussion -- 2.3. The Itô Integral and Its Basic Properties -- 2.3.1. The Itô Integral for Simple Processes -- 2.3.2. The Itô Integral for General Processes -- 2.4. Itô Processes and Their Properties -- 2.4.1. Gaussian Processes Generated by Itô Integrals -- 2.4.2. Itô Processes -- 2.4.3. Quadratic and Co-Variation of Itô Processes 2.5. Itô's Formula for Functions of BM and Itô Processes -- 2.5.1. Itô's Formula for Functions of BM -- 2.5.2. An "Antiderivative" Formula for Evaluating Itô Integrals -- 2.5.3. Itô's Formula for Itô Processes -- 2.6. Stochastic Differential Equations -- 2.6.1. Solutions to Linear SDEs -- 2.6.2. Existence and Uniqueness of a Strong Solution to an SDE -- 2.7. The Markov Property, Martingales, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.7.1. Forward Kolmogorov PDE -- 2.7.2. Transition CDF/PDF for Time-Homogeneous Diffusions -- 2.8. Radon-Nikodym Derivative Process and Girsanov's Theorem -- 2.8.1. Some Applications of Girsanov's Theorem -- 2.9. Brownian Martingale Representation Theorem -- 2.10. Stochastic Calculus for Multidimensional BM -- 2.10.1. The Itô Integral and Itô's Formula for Multiple Processes on Multidimensional BM -- 2.10.2. Multidimensional SDEs, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.10.3. Girsanov's Theorem for Multidimensional BM -- 2.10.4. Martingale Representation Theorem for Multidimensional BM -- 2.11. Exercises -- II. Continuous-Time Modelling -- 3. Risk-Neutral Pricing in the (B, S) Economy: One Underlying Stock -- 3.1. From the CRR Model to the BSM Model -- 3.1.1. Portfolio Strategies in the Binomial Tree Model -- 3.1.2. The Cox-Ross-Rubinstein Model and its Continuous-Time Limit -- 3.2. Replication (Hedging) and Derivative Pricing in the Simplest Black-Scholes Economy -- 3.2.1. Pricing Standard European Calls and Puts -- 3.2.2. Hedging Standard European Calls and Puts -- 3.2.3. Europeans with Piecewise Linear Payoffs -- 3.2.4. Power Options -- 3.2.5. Dividend Paying Stock -- 3.2.6. Option Pricing with the Stock Numéraire -- 3.3. Forward Starting, Chooser, and Compound Options -- 3.4. Some European-Style Path-Dependent Derivatives -- 3.4.1. Risk-Neutral Pricing under GBM. 3.4.2. Pricing Single Barrier Options -- 3.4.3. Pricing Lookback Options -- 3.5. Structural Credit Risk Models -- 3.5.1. The Merton Model -- 3.5.2. The Black-Cox Model -- 3.6. Exercises -- 4. Risk-Neutral Pricing in a Multi-Asset Economy -- 4.1. General Multi-Asset Market Model: Replication and Risk-Neutral Pricing -- 4.2. Equivalent Martingale Measures: Derivative Pricing with General Numéraire Assets -- 4.3. Black-Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives -- 4.3.1. Standard European Option Pricing for Multi-Stock GBM -- 4.3.2. Explicit Pricing Formulae for the GBM Model -- 4.3.3. Cross-Currency Option Valuation -- 4.3.4. Option Valuation with General Numéraire Assets -- 4.4. Exercises -- 5. American Options -- 5.1. Basic Properties of Early-Exercise Options -- 5.2. Arbitrage-Free Pricing of American Options -- 5.2.1. Optimal Stopping Formulation and Early-Exercise Boundary -- 5.2.2. The Smooth Pasting Condition -- 5.2.3. Put-Call Symmetry Relation -- 5.2.4. Dynamic Programming Approach for Bermudan Options -- 5.3. Perpetual American Options -- 5.3.1. Pricing a Perpetual Put Option -- 5.3.2. Pricing a Perpetual Call Option -- 5.4. Finite-Expiration American Options -- 5.4.1. The PDE Formulation -- 5.4.2. The Integral Equation Formulation -- 5.5. Exercises -- 6. Interest-Rate Modelling and Derivative Pricing -- 6.1. Basic Fixed Income Instruments -- 6.1.1. Bonds -- 6.1.2. Forward Rates -- 6.1.3. Arbitrage-Free Pricing -- 6.1.4. Fixed Income Derivatives -- 6.2. Single-Factor Models -- 6.2.1. Diffusion Models for the Short Rate Process -- 6.2.2. PDE for the Zero-Coupon Bond Value -- 6.2.3. Affine Term Structure Models -- 6.2.4. The Ho-Lee Model -- 6.2.5. The Vasiček Model -- 6.2.6. The Cox-Ingersoll-Ross Model -- 6.3. Heath-Jarrow-Morton Formulation -- 6.3.1. HJM under Risk-Neutral Measure 6.3.2. Relationship between HJM and Affine Yield Models -- 6.4. Multifactor Affine Term Structure Models -- 6.4.1. Gaussian Multifactor Models -- 6.4.2. Equivalent Classes of Affine Models -- 6.5. Pricing Derivatives under Forward Measures -- 6.5.1. Forward Measures -- 6.5.2. Pricing Stock Options under Stochastic Interest Rates -- 6.5.3. Pricing Options on Zero-Coupon Bonds -- 6.6. LIBOR Model -- 6.6.1. LIBOR Rates -- 6.6.2. The Brace-Gatarek-Musiela Model of LIBOR Rates -- 6.6.3. Pricing Caplets, Caps, and Swaps -- 6.7. Exercises -- 7. Alternative Models of Asset Price Dynamics -- 7.1. Characteristic Functions -- 7.1.1. Definition and Properties -- 7.1.2. Recovering the Distribution Function -- 7.1.3. Pricing Standard European Options -- 7.1.4. The Carr-Madan Method for Pricing Vanilla Options -- 7.2. Stochastic Volatility Diffusion Models -- 7.2.1. Local Volatility Models -- 7.2.2. Constant Elasticity of Variance Model -- 7.3. The Heston model -- 7.3.1. Solution to the Ricatti Equation -- 7.3.2. Implied Volatility for the Heston Model -- 7.4. Models with Jumps -- 7.4.1. The Poisson Process -- 7.4.2. Jump Diffusion Models with a Compound Poisson Component -- 7.4.3. The Merton Jump Diffusion Model -- 7.4.4. Characteristic Function for a Jump Diffusion Process -- 7.4.5. Change of Measure for Jump Diffusion Processes -- 7.4.6. The Variance Gamma Model -- 7.5. Exercises -- A. Essentials of General Probability Theory -- A.1. Random Variables and Lebesgue Integration -- A.2. Multidimensional Lebesgue Integration -- A.3. Multiple Random Variables and Joint Distributions -- A.4. Conditioning -- A.5. Changing Probability Measures -- B. Some Useful Integral (Expectation) Identities and Symmetry Properties of Normal Random Variables -- C. Answers and Hints to Exercises -- C.1. Chapter 1 -- C.2. Chapter 2 -- C.3. Chapter 3 -- C.4. Chapter 4 -- C.5. Chapter 5 C.6. Chapter 6 -- C.7. Chapter 7 -- D. Glossary of Symbols and Abbreviations -- References -- Index Electronic books Makarov, Roman N. Sonstige oth Erscheint auch als Druck-Ausgabe Campolieti, Giuseppe Financial Mathematics Milton : CRC Press LLC,c2022 9781138603639 |
spellingShingle | Campolieti, Giuseppe Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- List of Figures -- Preface -- Authors -- I. Stochastic Calculus with Brownian Motion -- 1. One-Dimensional Brownian Motion and Related Processes -- 1.1. Multivariate Normal Distributions -- 1.1.1. Multivariate Normal Distribution -- 1.1.2. Conditional Normal Distributions -- 1.2. Standard Brownian Motion -- 1.2.1. One-Dimensional Symmetric Random Walk -- 1.2.2. Formal Definition and Basic Properties of Brownian Motion -- 1.2.3. Multivariate Distribution of Brownian Motion -- 1.2.4. The Markov Property and the Transition PDF -- 1.2.5. Quadratic Variation and Nondifferentiability of Paths -- 1.3. Some Processes Derived from Brownian Motion -- 1.3.1. Drifted Brownian Motion -- 1.3.2. Geometric Brownian Motion -- 1.3.3. Processes related by a monotonic mapping -- 1.3.4. Brownian Bridge -- 1.3.5. Gaussian Processes -- 1.4. First Hitting Times and Maximum and Minimum of Brownian Motion -- 1.4.1. The Reflection Principle: Standard Brownian Motion -- 1.4.2. Translated and Scaled Driftless Brownian Motion -- 1.4.3. Brownian Motion with Drift -- 1.5. Exercises -- 2. Introduction to Continuous-Time Stochastic Calculus -- 2.1. The Riemann Integral of Brownian Motion -- 2.1.1. The Riemann Integral -- 2.1.2. The Integral of a Brownian Path -- 2.2. The Riemann-Stieltjes Integral of Brownian Motion -- 2.2.1. The Riemann-Stieltjes Integral -- 2.2.2. Integrals w.r.t. Brownian Motion: Preliminary Discussion -- 2.3. The Itô Integral and Its Basic Properties -- 2.3.1. The Itô Integral for Simple Processes -- 2.3.2. The Itô Integral for General Processes -- 2.4. Itô Processes and Their Properties -- 2.4.1. Gaussian Processes Generated by Itô Integrals -- 2.4.2. Itô Processes -- 2.4.3. Quadratic and Co-Variation of Itô Processes 2.5. Itô's Formula for Functions of BM and Itô Processes -- 2.5.1. Itô's Formula for Functions of BM -- 2.5.2. An "Antiderivative" Formula for Evaluating Itô Integrals -- 2.5.3. Itô's Formula for Itô Processes -- 2.6. Stochastic Differential Equations -- 2.6.1. Solutions to Linear SDEs -- 2.6.2. Existence and Uniqueness of a Strong Solution to an SDE -- 2.7. The Markov Property, Martingales, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.7.1. Forward Kolmogorov PDE -- 2.7.2. Transition CDF/PDF for Time-Homogeneous Diffusions -- 2.8. Radon-Nikodym Derivative Process and Girsanov's Theorem -- 2.8.1. Some Applications of Girsanov's Theorem -- 2.9. Brownian Martingale Representation Theorem -- 2.10. Stochastic Calculus for Multidimensional BM -- 2.10.1. The Itô Integral and Itô's Formula for Multiple Processes on Multidimensional BM -- 2.10.2. Multidimensional SDEs, Feynman-Kac Formulae, and Transition CDFs and PDFs -- 2.10.3. Girsanov's Theorem for Multidimensional BM -- 2.10.4. Martingale Representation Theorem for Multidimensional BM -- 2.11. Exercises -- II. Continuous-Time Modelling -- 3. Risk-Neutral Pricing in the (B, S) Economy: One Underlying Stock -- 3.1. From the CRR Model to the BSM Model -- 3.1.1. Portfolio Strategies in the Binomial Tree Model -- 3.1.2. The Cox-Ross-Rubinstein Model and its Continuous-Time Limit -- 3.2. Replication (Hedging) and Derivative Pricing in the Simplest Black-Scholes Economy -- 3.2.1. Pricing Standard European Calls and Puts -- 3.2.2. Hedging Standard European Calls and Puts -- 3.2.3. Europeans with Piecewise Linear Payoffs -- 3.2.4. Power Options -- 3.2.5. Dividend Paying Stock -- 3.2.6. Option Pricing with the Stock Numéraire -- 3.3. Forward Starting, Chooser, and Compound Options -- 3.4. Some European-Style Path-Dependent Derivatives -- 3.4.1. Risk-Neutral Pricing under GBM. 3.4.2. Pricing Single Barrier Options -- 3.4.3. Pricing Lookback Options -- 3.5. Structural Credit Risk Models -- 3.5.1. The Merton Model -- 3.5.2. The Black-Cox Model -- 3.6. Exercises -- 4. Risk-Neutral Pricing in a Multi-Asset Economy -- 4.1. General Multi-Asset Market Model: Replication and Risk-Neutral Pricing -- 4.2. Equivalent Martingale Measures: Derivative Pricing with General Numéraire Assets -- 4.3. Black-Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives -- 4.3.1. Standard European Option Pricing for Multi-Stock GBM -- 4.3.2. Explicit Pricing Formulae for the GBM Model -- 4.3.3. Cross-Currency Option Valuation -- 4.3.4. Option Valuation with General Numéraire Assets -- 4.4. Exercises -- 5. American Options -- 5.1. Basic Properties of Early-Exercise Options -- 5.2. Arbitrage-Free Pricing of American Options -- 5.2.1. Optimal Stopping Formulation and Early-Exercise Boundary -- 5.2.2. The Smooth Pasting Condition -- 5.2.3. Put-Call Symmetry Relation -- 5.2.4. Dynamic Programming Approach for Bermudan Options -- 5.3. Perpetual American Options -- 5.3.1. Pricing a Perpetual Put Option -- 5.3.2. Pricing a Perpetual Call Option -- 5.4. Finite-Expiration American Options -- 5.4.1. The PDE Formulation -- 5.4.2. The Integral Equation Formulation -- 5.5. Exercises -- 6. Interest-Rate Modelling and Derivative Pricing -- 6.1. Basic Fixed Income Instruments -- 6.1.1. Bonds -- 6.1.2. Forward Rates -- 6.1.3. Arbitrage-Free Pricing -- 6.1.4. Fixed Income Derivatives -- 6.2. Single-Factor Models -- 6.2.1. Diffusion Models for the Short Rate Process -- 6.2.2. PDE for the Zero-Coupon Bond Value -- 6.2.3. Affine Term Structure Models -- 6.2.4. The Ho-Lee Model -- 6.2.5. The Vasiček Model -- 6.2.6. The Cox-Ingersoll-Ross Model -- 6.3. Heath-Jarrow-Morton Formulation -- 6.3.1. HJM under Risk-Neutral Measure 6.3.2. Relationship between HJM and Affine Yield Models -- 6.4. Multifactor Affine Term Structure Models -- 6.4.1. Gaussian Multifactor Models -- 6.4.2. Equivalent Classes of Affine Models -- 6.5. Pricing Derivatives under Forward Measures -- 6.5.1. Forward Measures -- 6.5.2. Pricing Stock Options under Stochastic Interest Rates -- 6.5.3. Pricing Options on Zero-Coupon Bonds -- 6.6. LIBOR Model -- 6.6.1. LIBOR Rates -- 6.6.2. The Brace-Gatarek-Musiela Model of LIBOR Rates -- 6.6.3. Pricing Caplets, Caps, and Swaps -- 6.7. Exercises -- 7. Alternative Models of Asset Price Dynamics -- 7.1. Characteristic Functions -- 7.1.1. Definition and Properties -- 7.1.2. Recovering the Distribution Function -- 7.1.3. Pricing Standard European Options -- 7.1.4. The Carr-Madan Method for Pricing Vanilla Options -- 7.2. Stochastic Volatility Diffusion Models -- 7.2.1. Local Volatility Models -- 7.2.2. Constant Elasticity of Variance Model -- 7.3. The Heston model -- 7.3.1. Solution to the Ricatti Equation -- 7.3.2. Implied Volatility for the Heston Model -- 7.4. Models with Jumps -- 7.4.1. The Poisson Process -- 7.4.2. Jump Diffusion Models with a Compound Poisson Component -- 7.4.3. The Merton Jump Diffusion Model -- 7.4.4. Characteristic Function for a Jump Diffusion Process -- 7.4.5. Change of Measure for Jump Diffusion Processes -- 7.4.6. The Variance Gamma Model -- 7.5. Exercises -- A. Essentials of General Probability Theory -- A.1. Random Variables and Lebesgue Integration -- A.2. Multidimensional Lebesgue Integration -- A.3. Multiple Random Variables and Joint Distributions -- A.4. Conditioning -- A.5. Changing Probability Measures -- B. Some Useful Integral (Expectation) Identities and Symmetry Properties of Normal Random Variables -- C. Answers and Hints to Exercises -- C.1. Chapter 1 -- C.2. Chapter 2 -- C.3. Chapter 3 -- C.4. Chapter 4 -- C.5. Chapter 5 C.6. Chapter 6 -- C.7. Chapter 7 -- D. Glossary of Symbols and Abbreviations -- References -- Index |
title | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_auth | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_exact_search | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_exact_search_txtP | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_full | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_fullStr | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_full_unstemmed | Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II. |
title_short | Financial Mathematics |
title_sort | financial mathematics a comprehensive treatment in continuous time volume ii |
title_sub | A Comprehensive Treatment in Continuous Time Volume II. |
work_keys_str_mv | AT campolietigiuseppe financialmathematicsacomprehensivetreatmentincontinuoustimevolumeii AT makarovromann financialmathematicsacomprehensivetreatmentincontinuoustimevolumeii |