How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego
Elsevier Science & Technology
2022
|
Schriftenreihe: | Expertise in Pharmaceutical Process Technology Ser
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Beschreibung: | 1 Online-Ressource (444 Seiten) |
ISBN: | 9780128134801 9780128134795 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048632020 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230105s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780128134801 |q electronic bk. |9 978-0-12-813480-1 | ||
020 | |a 9780128134795 |9 978-0-12-813479-5 | ||
035 | |a (ZDB-30-PQE)EBC6942630 | ||
035 | |a (ZDB-30-PAD)EBC6942630 | ||
035 | |a (ZDB-89-EBL)EBL6942630 | ||
035 | |a (OCoLC)1311333267 | ||
035 | |a (DE-599)BVBBV048632020 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
100 | 1 | |a Muzzio, Fernando |e Verfasser |4 aut | |
245 | 1 | 0 | |a How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
264 | 1 | |a San Diego |b Elsevier Science & Technology |c 2022 | |
264 | 4 | |c ©2022 | |
300 | |a 1 Online-Ressource (444 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Expertise in Pharmaceutical Process Technology Ser | |
505 | 8 | |a Front Cover -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- Copyright -- Dedication -- Contents -- Contributors -- About the Expertise in Pharmaceutical Process Technology Series -- Format -- Subject matter -- Target audience -- Foreword -- 1 - Introduction -- 1. Foreword-our journey in CM -- 2. The many benefits of continuous solid dose manufacturing -- 2.1 Improving product quality -- 2.2 Faster product and process development -- 2.3 Faster responses to shortages and emergencies -- 2.4 Potential for reducing drug prices -- 3. The engineering toolbox, applied to pharmaceutical manufacturing process design -- References -- 2 - Characterization of material properties -- 1. Introduction -- 2. Summary of the characterization techniques and their description -- 2.1 Bulk density test -- 2.2 Particle size distribution test -- 2.3 Powder flow measurements -- 2.4 Powder hydrophobicity/wettability measurements -- 2.5 Electrostatic measurement (impedance test) -- 3. Developing a material property database -- 4. Multivariate analysis -- 4.1 Principal component analysis -- 4.2 Clustering analysis -- 5. Application of material property databases -- 5.1 Identifying similar materials as surrogates for process development -- 5.2 Predicting process performance using material property databases -- 6. Conclusions -- References -- 3 - Loss-in-weight feeding -- 1. Introduction -- 2. Characterization of loss-in-weight feeders -- 2.1 Gravimetric feeding performance -- 2.1.1 Materials and equipment -- 2.1.2 Methodology -- 2.1.3 Experimental setup -- 2.1.4 General volumetric test run procedure -- 2.1.5 General gravimetric test run procedure -- 2.1.6 Analysis and filtering -- 2.1.7 Results and discussion -- 2.2 Ideal design space for loss-in-weight feeders | |
505 | 8 | |a 2.2.1 Materials and experimental setup -- 2.2.2 Methods -- 2.3 Feed rate deviation caused by hopper refill -- 2.3.1 Operation during hopper refill -- 2.3.2 Quantifying deviation -- 2.3.3 Effect of refill level -- 2.3.4 Investigation of refill method -- 3. Effect of material flow properties on loss-in-weight feeding -- 4. Modeling of loss-in-weight feeders -- 5. Conclusions -- References -- 4 - Continuous powder mixing and lubrication -- 1. Fundamentals of powder mixing -- 1.1 Type of mixtures -- 1.1.1 Perfect mixture -- 1.1.2 Random mixture -- 1.1.3 Ordered mixtures -- 1.1.4 Textured (segregated) mixtures -- 1.2 Quantifying mixtures -- 1.3 Sampling -- 1.3.1 Sample size -- 1.3.2 Number of samples -- 1.3.3 Sampling in batch versus continuous blenders -- 1.4 Mixing mechanisms -- 2. Modes of powder mixing -- 2.1 Batch powder blenders -- 2.2 Continuous powder blenders -- 3. Mixing in continuous tubular blenders -- 3.1 Residence time distribution in continuous powders blenders -- 3.2 Choosing an appropriate mixer configuration -- 4. Lubrication in continuous tubular blenders -- 4.1 Role of lubricant -- 4.2 Measuring lubricity -- 4.3 Lubricant mixing in continuous blenders -- 4.4 Lubricant mixing in continuous versus batch systems -- 5. Role of delumping in continuous powder mixing -- 6. Other topics -- 6.1 Modeling in continuous blenders -- 6.2 Blending of segregating ingredients in continuous blenders -- 7. Conclusions -- References -- 5 - Continuous dry granulation -- 1. Introduction -- 2. Roller compaction -- 3. Milling -- 3.1 Types of mill -- 3.1.1 Impact mill -- 3.1.2 Shear-compression mill -- 4. Roller compaction characterization and micromechanical modeling -- 4.1 Near-infrared spectroscopy-information on chemical composition and physical properties -- 4.1.1 Near-infrared spectroscopy in monitoring roller compaction | |
505 | 8 | |a 4.2 Computational modeling of compaction -- 5. Granule characterization after milling -- 5.1 Sieve analysis -- 5.2 Laser diffraction -- 5.3 Laser diffraction (Insitec) -- 5.4 Dynamic image analysis -- 5.5 Focused beam reflectance measurement -- 5.6 Bulk density -- 5.7 Tap density -- 5.8 Compressibility index and Hausner ratio -- 5.9 Friability -- 5.10 Porosity -- 6. Models for milling -- 6.1 Population balance models -- 6.2 Mechanistic models -- 7. Conclusions -- References -- 6 - A modeling, control, sensing, and experimental overview of continuous wet granulation -- 1. Introduction -- 2. Experimental design -- 2.1 Residence time distribution in continuous wet granulation -- 3. Process modeling -- 4. Case studies -- 4.1 Twin screw granulator -- 4.2 High shear granulator -- 5. Conclusions -- References -- 7 - Continuous fluid bed processing -- 1. Introduction -- 2. Basics of fluidized beds -- 3. Drying background and theory -- 4. Granulation drying background and theory -- 5. Commercial application -- 6. Why batch -- 7. Continuous processes in other industries -- 8. Traditional continuous fluid bed design -- 9. Adaptation to pharmaceutical processing -- 10. Traceability -- 11. Other continuous granulation methods -- 12. Summary and conclusion -- 8 - Continuous tableting -- 1. Fundamentals of tableting -- 2. Phenomenological modeling of compaction -- 3. Characterization of compaction operations -- 4. Characterization of tablets in continuous manufacturing -- 4.1 Models for composition -- 4.2 Models for hardness prediction -- 4.2.1 Ultrasound testing -- 4.2.2 Infrared thermography -- 4.2.3 Models for dissolution prediction -- 5. Control -- 5.1 Inbuilt tablet press control strategy -- 5.2 Advanced model predictive control system -- 5.3 Design of an advanced model predictive control system for a tablet press | |
505 | 8 | |a 5.4 Implementation of advanced model predictive control system into tablet press -- 5.5 Supervisory control system to integrate tablet press with CM line -- 6. Designing an experimental plan for continuous tableting -- 7. Conclusions -- References -- 9 - Continuous film coating within continuous oral solid dose manufacturing -- 1. Fundamentals of continuous coating within continuous manufacturing -- 2. Goals of continuous film coating -- 2.1 Cosmetic coatings -- 2.2 Functional coatings -- 2.3 Basics of the film coating process -- 2.3.1 The process (recipe) -- 2.3.2 The platform (coater) -- 2.3.2.1 Application of the film solution -- 2.3.2.2 Drying the tablets -- 2.3.2.3 Mixing the tablets -- 2.3.3 The formulation (solution/suspension) -- 2.3.3.1 Solutions for cosmetic film coating -- 2.3.3.2 Solutions and suspensions for enteric coating -- 3. Expectations of continuous coaters -- 3.1 Change in manufacturing strategies -- 3.2 Supporting factors -- 3.3 Partnering on the continuous manufacturing coating projects -- 3.4 Special demands of the continuous coating process -- 4. Types of batch and continuous coaters used in continuous processes -- 4.1 Traditional "batch" coaters in continuous manufacturing -- 4.2 The GEA ConsiGma coater -- 4.3 Classic high-throughput continuous coaters -- 4.4 A hybrid: Driaconti-T multichambered continuous coater -- 4.5 Overall comparison -- 4.6 Considerations for production and other aspects -- 5. Controls and process analytical technology -- 5.1 Simulation and modeling of the process -- 6. Conclusions -- References -- Further reading -- 10 - Role of process analytical technology in continuous manufacturing -- 1. Introduction/background -- 2. Method development and life cycle considerations for PAT in CM -- 2.1 Instrument, sampling, reference values, multivariate analysis, sensitivity | |
505 | 8 | |a 2.2 Sensor location and placement for calibration model building -- 2.2.1 Sampling volume -- 2.3 PAT method validation overview in CM -- 2.4 Maintenance overview -- 3. PAT in a CM commercial control strategy -- 4. Case studies -- 4.1 Continuous blending -- 4.2 Granulation -- 4.3 Residence time distribution determination in feeders and blenders -- 4.3.1 Feeders -- 4.3.2 Blenders -- 4.4 Tablets: dissolution alternatives -- 4.5 Chemical imaging: offline uniformity, API distribution -- 5. Conclusions -- References -- 11 - Developing process models of an open-loop integrated system -- 1. Introduction -- 2. Loss-in-weight feeder -- 3. Continuous blender -- 4. Roller compactor -- 5. Continuous wet granulator -- 6. Fluidized bed dryer -- 7. Conical screen mill -- 8. Tablet press -- 9. Integration -- 10. Conclusions -- References -- 12 - Integrated process control -- 1. Introduction -- 2. Design of the control architecture -- 3. Develop integrated model of closed-loop system -- 4. Implementation and verification of the control framework -- 5. Characterize and verify closed-loop performance -- 6. Conclusions -- Acknowledgment -- References -- 13 - Applications of optimization in the pharmaceutical process development -- 1. Introduction -- 2. Optimization objectives in pharmaceutical process development -- 2.1 Single-objective optimization -- 2.2 Multiobjective optimization -- 3. Applications of data-driven models in optimization -- 3.1 Sampling plans -- 3.2 Building a data-driven model -- 3.3 Response surface methodology -- 3.4 Partial least squares -- 3.5 Artificial neural network -- 3.6 Kriging -- 3.7 Model validation -- 3.8 Data-driven models in support of optimization needs -- 4. Optimization methods in pharmaceutical processes -- 4.1 Derivative-based methods -- 4.2 Successive quadratic programming -- 4.3 Derivative-free methods | |
505 | 8 | |a 4.4 Direct search methods | |
650 | 4 | |a Pharmaceutical industry | |
650 | 4 | |a Manufacturing processes | |
650 | 4 | |a Drug development | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Oka, Sarang |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Muzzio, Fernando |t How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |d San Diego : Elsevier Science & Technology,c2022 |z 9780128134795 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034007040 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6942630 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184765078700032 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Muzzio, Fernando |
author_facet | Muzzio, Fernando |
author_role | aut |
author_sort | Muzzio, Fernando |
author_variant | f m fm |
building | Verbundindex |
bvnumber | BV048632020 |
collection | ZDB-30-PQE |
contents | Front Cover -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- Copyright -- Dedication -- Contents -- Contributors -- About the Expertise in Pharmaceutical Process Technology Series -- Format -- Subject matter -- Target audience -- Foreword -- 1 - Introduction -- 1. Foreword-our journey in CM -- 2. The many benefits of continuous solid dose manufacturing -- 2.1 Improving product quality -- 2.2 Faster product and process development -- 2.3 Faster responses to shortages and emergencies -- 2.4 Potential for reducing drug prices -- 3. The engineering toolbox, applied to pharmaceutical manufacturing process design -- References -- 2 - Characterization of material properties -- 1. Introduction -- 2. Summary of the characterization techniques and their description -- 2.1 Bulk density test -- 2.2 Particle size distribution test -- 2.3 Powder flow measurements -- 2.4 Powder hydrophobicity/wettability measurements -- 2.5 Electrostatic measurement (impedance test) -- 3. Developing a material property database -- 4. Multivariate analysis -- 4.1 Principal component analysis -- 4.2 Clustering analysis -- 5. Application of material property databases -- 5.1 Identifying similar materials as surrogates for process development -- 5.2 Predicting process performance using material property databases -- 6. Conclusions -- References -- 3 - Loss-in-weight feeding -- 1. Introduction -- 2. Characterization of loss-in-weight feeders -- 2.1 Gravimetric feeding performance -- 2.1.1 Materials and equipment -- 2.1.2 Methodology -- 2.1.3 Experimental setup -- 2.1.4 General volumetric test run procedure -- 2.1.5 General gravimetric test run procedure -- 2.1.6 Analysis and filtering -- 2.1.7 Results and discussion -- 2.2 Ideal design space for loss-in-weight feeders 2.2.1 Materials and experimental setup -- 2.2.2 Methods -- 2.3 Feed rate deviation caused by hopper refill -- 2.3.1 Operation during hopper refill -- 2.3.2 Quantifying deviation -- 2.3.3 Effect of refill level -- 2.3.4 Investigation of refill method -- 3. Effect of material flow properties on loss-in-weight feeding -- 4. Modeling of loss-in-weight feeders -- 5. Conclusions -- References -- 4 - Continuous powder mixing and lubrication -- 1. Fundamentals of powder mixing -- 1.1 Type of mixtures -- 1.1.1 Perfect mixture -- 1.1.2 Random mixture -- 1.1.3 Ordered mixtures -- 1.1.4 Textured (segregated) mixtures -- 1.2 Quantifying mixtures -- 1.3 Sampling -- 1.3.1 Sample size -- 1.3.2 Number of samples -- 1.3.3 Sampling in batch versus continuous blenders -- 1.4 Mixing mechanisms -- 2. Modes of powder mixing -- 2.1 Batch powder blenders -- 2.2 Continuous powder blenders -- 3. Mixing in continuous tubular blenders -- 3.1 Residence time distribution in continuous powders blenders -- 3.2 Choosing an appropriate mixer configuration -- 4. Lubrication in continuous tubular blenders -- 4.1 Role of lubricant -- 4.2 Measuring lubricity -- 4.3 Lubricant mixing in continuous blenders -- 4.4 Lubricant mixing in continuous versus batch systems -- 5. Role of delumping in continuous powder mixing -- 6. Other topics -- 6.1 Modeling in continuous blenders -- 6.2 Blending of segregating ingredients in continuous blenders -- 7. Conclusions -- References -- 5 - Continuous dry granulation -- 1. Introduction -- 2. Roller compaction -- 3. Milling -- 3.1 Types of mill -- 3.1.1 Impact mill -- 3.1.2 Shear-compression mill -- 4. Roller compaction characterization and micromechanical modeling -- 4.1 Near-infrared spectroscopy-information on chemical composition and physical properties -- 4.1.1 Near-infrared spectroscopy in monitoring roller compaction 4.2 Computational modeling of compaction -- 5. Granule characterization after milling -- 5.1 Sieve analysis -- 5.2 Laser diffraction -- 5.3 Laser diffraction (Insitec) -- 5.4 Dynamic image analysis -- 5.5 Focused beam reflectance measurement -- 5.6 Bulk density -- 5.7 Tap density -- 5.8 Compressibility index and Hausner ratio -- 5.9 Friability -- 5.10 Porosity -- 6. Models for milling -- 6.1 Population balance models -- 6.2 Mechanistic models -- 7. Conclusions -- References -- 6 - A modeling, control, sensing, and experimental overview of continuous wet granulation -- 1. Introduction -- 2. Experimental design -- 2.1 Residence time distribution in continuous wet granulation -- 3. Process modeling -- 4. Case studies -- 4.1 Twin screw granulator -- 4.2 High shear granulator -- 5. Conclusions -- References -- 7 - Continuous fluid bed processing -- 1. Introduction -- 2. Basics of fluidized beds -- 3. Drying background and theory -- 4. Granulation drying background and theory -- 5. Commercial application -- 6. Why batch -- 7. Continuous processes in other industries -- 8. Traditional continuous fluid bed design -- 9. Adaptation to pharmaceutical processing -- 10. Traceability -- 11. Other continuous granulation methods -- 12. Summary and conclusion -- 8 - Continuous tableting -- 1. Fundamentals of tableting -- 2. Phenomenological modeling of compaction -- 3. Characterization of compaction operations -- 4. Characterization of tablets in continuous manufacturing -- 4.1 Models for composition -- 4.2 Models for hardness prediction -- 4.2.1 Ultrasound testing -- 4.2.2 Infrared thermography -- 4.2.3 Models for dissolution prediction -- 5. Control -- 5.1 Inbuilt tablet press control strategy -- 5.2 Advanced model predictive control system -- 5.3 Design of an advanced model predictive control system for a tablet press 5.4 Implementation of advanced model predictive control system into tablet press -- 5.5 Supervisory control system to integrate tablet press with CM line -- 6. Designing an experimental plan for continuous tableting -- 7. Conclusions -- References -- 9 - Continuous film coating within continuous oral solid dose manufacturing -- 1. Fundamentals of continuous coating within continuous manufacturing -- 2. Goals of continuous film coating -- 2.1 Cosmetic coatings -- 2.2 Functional coatings -- 2.3 Basics of the film coating process -- 2.3.1 The process (recipe) -- 2.3.2 The platform (coater) -- 2.3.2.1 Application of the film solution -- 2.3.2.2 Drying the tablets -- 2.3.2.3 Mixing the tablets -- 2.3.3 The formulation (solution/suspension) -- 2.3.3.1 Solutions for cosmetic film coating -- 2.3.3.2 Solutions and suspensions for enteric coating -- 3. Expectations of continuous coaters -- 3.1 Change in manufacturing strategies -- 3.2 Supporting factors -- 3.3 Partnering on the continuous manufacturing coating projects -- 3.4 Special demands of the continuous coating process -- 4. Types of batch and continuous coaters used in continuous processes -- 4.1 Traditional "batch" coaters in continuous manufacturing -- 4.2 The GEA ConsiGma coater -- 4.3 Classic high-throughput continuous coaters -- 4.4 A hybrid: Driaconti-T multichambered continuous coater -- 4.5 Overall comparison -- 4.6 Considerations for production and other aspects -- 5. Controls and process analytical technology -- 5.1 Simulation and modeling of the process -- 6. Conclusions -- References -- Further reading -- 10 - Role of process analytical technology in continuous manufacturing -- 1. Introduction/background -- 2. Method development and life cycle considerations for PAT in CM -- 2.1 Instrument, sampling, reference values, multivariate analysis, sensitivity 2.2 Sensor location and placement for calibration model building -- 2.2.1 Sampling volume -- 2.3 PAT method validation overview in CM -- 2.4 Maintenance overview -- 3. PAT in a CM commercial control strategy -- 4. Case studies -- 4.1 Continuous blending -- 4.2 Granulation -- 4.3 Residence time distribution determination in feeders and blenders -- 4.3.1 Feeders -- 4.3.2 Blenders -- 4.4 Tablets: dissolution alternatives -- 4.5 Chemical imaging: offline uniformity, API distribution -- 5. Conclusions -- References -- 11 - Developing process models of an open-loop integrated system -- 1. Introduction -- 2. Loss-in-weight feeder -- 3. Continuous blender -- 4. Roller compactor -- 5. Continuous wet granulator -- 6. Fluidized bed dryer -- 7. Conical screen mill -- 8. Tablet press -- 9. Integration -- 10. Conclusions -- References -- 12 - Integrated process control -- 1. Introduction -- 2. Design of the control architecture -- 3. Develop integrated model of closed-loop system -- 4. Implementation and verification of the control framework -- 5. Characterize and verify closed-loop performance -- 6. Conclusions -- Acknowledgment -- References -- 13 - Applications of optimization in the pharmaceutical process development -- 1. Introduction -- 2. Optimization objectives in pharmaceutical process development -- 2.1 Single-objective optimization -- 2.2 Multiobjective optimization -- 3. Applications of data-driven models in optimization -- 3.1 Sampling plans -- 3.2 Building a data-driven model -- 3.3 Response surface methodology -- 3.4 Partial least squares -- 3.5 Artificial neural network -- 3.6 Kriging -- 3.7 Model validation -- 3.8 Data-driven models in support of optimization needs -- 4. Optimization methods in pharmaceutical processes -- 4.1 Derivative-based methods -- 4.2 Successive quadratic programming -- 4.3 Derivative-free methods 4.4 Direct search methods |
ctrlnum | (ZDB-30-PQE)EBC6942630 (ZDB-30-PAD)EBC6942630 (ZDB-89-EBL)EBL6942630 (OCoLC)1311333267 (DE-599)BVBBV048632020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10998nmm a2200493 c 4500</leader><controlfield tag="001">BV048632020</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230105s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128134801</subfield><subfield code="q">electronic bk.</subfield><subfield code="9">978-0-12-813480-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128134795</subfield><subfield code="9">978-0-12-813479-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6942630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6942630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6942630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1311333267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048632020</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muzzio, Fernando</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">San Diego</subfield><subfield code="b">Elsevier Science & Technology</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (444 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Expertise in Pharmaceutical Process Technology Ser</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- Copyright -- Dedication -- Contents -- Contributors -- About the Expertise in Pharmaceutical Process Technology Series -- Format -- Subject matter -- Target audience -- Foreword -- 1 - Introduction -- 1. Foreword-our journey in CM -- 2. The many benefits of continuous solid dose manufacturing -- 2.1 Improving product quality -- 2.2 Faster product and process development -- 2.3 Faster responses to shortages and emergencies -- 2.4 Potential for reducing drug prices -- 3. The engineering toolbox, applied to pharmaceutical manufacturing process design -- References -- 2 - Characterization of material properties -- 1. Introduction -- 2. Summary of the characterization techniques and their description -- 2.1 Bulk density test -- 2.2 Particle size distribution test -- 2.3 Powder flow measurements -- 2.4 Powder hydrophobicity/wettability measurements -- 2.5 Electrostatic measurement (impedance test) -- 3. Developing a material property database -- 4. Multivariate analysis -- 4.1 Principal component analysis -- 4.2 Clustering analysis -- 5. Application of material property databases -- 5.1 Identifying similar materials as surrogates for process development -- 5.2 Predicting process performance using material property databases -- 6. Conclusions -- References -- 3 - Loss-in-weight feeding -- 1. Introduction -- 2. Characterization of loss-in-weight feeders -- 2.1 Gravimetric feeding performance -- 2.1.1 Materials and equipment -- 2.1.2 Methodology -- 2.1.3 Experimental setup -- 2.1.4 General volumetric test run procedure -- 2.1.5 General gravimetric test run procedure -- 2.1.6 Analysis and filtering -- 2.1.7 Results and discussion -- 2.2 Ideal design space for loss-in-weight feeders</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.1 Materials and experimental setup -- 2.2.2 Methods -- 2.3 Feed rate deviation caused by hopper refill -- 2.3.1 Operation during hopper refill -- 2.3.2 Quantifying deviation -- 2.3.3 Effect of refill level -- 2.3.4 Investigation of refill method -- 3. Effect of material flow properties on loss-in-weight feeding -- 4. Modeling of loss-in-weight feeders -- 5. Conclusions -- References -- 4 - Continuous powder mixing and lubrication -- 1. Fundamentals of powder mixing -- 1.1 Type of mixtures -- 1.1.1 Perfect mixture -- 1.1.2 Random mixture -- 1.1.3 Ordered mixtures -- 1.1.4 Textured (segregated) mixtures -- 1.2 Quantifying mixtures -- 1.3 Sampling -- 1.3.1 Sample size -- 1.3.2 Number of samples -- 1.3.3 Sampling in batch versus continuous blenders -- 1.4 Mixing mechanisms -- 2. Modes of powder mixing -- 2.1 Batch powder blenders -- 2.2 Continuous powder blenders -- 3. Mixing in continuous tubular blenders -- 3.1 Residence time distribution in continuous powders blenders -- 3.2 Choosing an appropriate mixer configuration -- 4. Lubrication in continuous tubular blenders -- 4.1 Role of lubricant -- 4.2 Measuring lubricity -- 4.3 Lubricant mixing in continuous blenders -- 4.4 Lubricant mixing in continuous versus batch systems -- 5. Role of delumping in continuous powder mixing -- 6. Other topics -- 6.1 Modeling in continuous blenders -- 6.2 Blending of segregating ingredients in continuous blenders -- 7. Conclusions -- References -- 5 - Continuous dry granulation -- 1. Introduction -- 2. Roller compaction -- 3. Milling -- 3.1 Types of mill -- 3.1.1 Impact mill -- 3.1.2 Shear-compression mill -- 4. Roller compaction characterization and micromechanical modeling -- 4.1 Near-infrared spectroscopy-information on chemical composition and physical properties -- 4.1.1 Near-infrared spectroscopy in monitoring roller compaction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 Computational modeling of compaction -- 5. Granule characterization after milling -- 5.1 Sieve analysis -- 5.2 Laser diffraction -- 5.3 Laser diffraction (Insitec) -- 5.4 Dynamic image analysis -- 5.5 Focused beam reflectance measurement -- 5.6 Bulk density -- 5.7 Tap density -- 5.8 Compressibility index and Hausner ratio -- 5.9 Friability -- 5.10 Porosity -- 6. Models for milling -- 6.1 Population balance models -- 6.2 Mechanistic models -- 7. Conclusions -- References -- 6 - A modeling, control, sensing, and experimental overview of continuous wet granulation -- 1. Introduction -- 2. Experimental design -- 2.1 Residence time distribution in continuous wet granulation -- 3. Process modeling -- 4. Case studies -- 4.1 Twin screw granulator -- 4.2 High shear granulator -- 5. Conclusions -- References -- 7 - Continuous fluid bed processing -- 1. Introduction -- 2. Basics of fluidized beds -- 3. Drying background and theory -- 4. Granulation drying background and theory -- 5. Commercial application -- 6. Why batch -- 7. Continuous processes in other industries -- 8. Traditional continuous fluid bed design -- 9. Adaptation to pharmaceutical processing -- 10. Traceability -- 11. Other continuous granulation methods -- 12. Summary and conclusion -- 8 - Continuous tableting -- 1. Fundamentals of tableting -- 2. Phenomenological modeling of compaction -- 3. Characterization of compaction operations -- 4. Characterization of tablets in continuous manufacturing -- 4.1 Models for composition -- 4.2 Models for hardness prediction -- 4.2.1 Ultrasound testing -- 4.2.2 Infrared thermography -- 4.2.3 Models for dissolution prediction -- 5. Control -- 5.1 Inbuilt tablet press control strategy -- 5.2 Advanced model predictive control system -- 5.3 Design of an advanced model predictive control system for a tablet press</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Implementation of advanced model predictive control system into tablet press -- 5.5 Supervisory control system to integrate tablet press with CM line -- 6. Designing an experimental plan for continuous tableting -- 7. Conclusions -- References -- 9 - Continuous film coating within continuous oral solid dose manufacturing -- 1. Fundamentals of continuous coating within continuous manufacturing -- 2. Goals of continuous film coating -- 2.1 Cosmetic coatings -- 2.2 Functional coatings -- 2.3 Basics of the film coating process -- 2.3.1 The process (recipe) -- 2.3.2 The platform (coater) -- 2.3.2.1 Application of the film solution -- 2.3.2.2 Drying the tablets -- 2.3.2.3 Mixing the tablets -- 2.3.3 The formulation (solution/suspension) -- 2.3.3.1 Solutions for cosmetic film coating -- 2.3.3.2 Solutions and suspensions for enteric coating -- 3. Expectations of continuous coaters -- 3.1 Change in manufacturing strategies -- 3.2 Supporting factors -- 3.3 Partnering on the continuous manufacturing coating projects -- 3.4 Special demands of the continuous coating process -- 4. Types of batch and continuous coaters used in continuous processes -- 4.1 Traditional "batch" coaters in continuous manufacturing -- 4.2 The GEA ConsiGma coater -- 4.3 Classic high-throughput continuous coaters -- 4.4 A hybrid: Driaconti-T multichambered continuous coater -- 4.5 Overall comparison -- 4.6 Considerations for production and other aspects -- 5. Controls and process analytical technology -- 5.1 Simulation and modeling of the process -- 6. Conclusions -- References -- Further reading -- 10 - Role of process analytical technology in continuous manufacturing -- 1. Introduction/background -- 2. Method development and life cycle considerations for PAT in CM -- 2.1 Instrument, sampling, reference values, multivariate analysis, sensitivity</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 Sensor location and placement for calibration model building -- 2.2.1 Sampling volume -- 2.3 PAT method validation overview in CM -- 2.4 Maintenance overview -- 3. PAT in a CM commercial control strategy -- 4. Case studies -- 4.1 Continuous blending -- 4.2 Granulation -- 4.3 Residence time distribution determination in feeders and blenders -- 4.3.1 Feeders -- 4.3.2 Blenders -- 4.4 Tablets: dissolution alternatives -- 4.5 Chemical imaging: offline uniformity, API distribution -- 5. Conclusions -- References -- 11 - Developing process models of an open-loop integrated system -- 1. Introduction -- 2. Loss-in-weight feeder -- 3. Continuous blender -- 4. Roller compactor -- 5. Continuous wet granulator -- 6. Fluidized bed dryer -- 7. Conical screen mill -- 8. Tablet press -- 9. Integration -- 10. Conclusions -- References -- 12 - Integrated process control -- 1. Introduction -- 2. Design of the control architecture -- 3. Develop integrated model of closed-loop system -- 4. Implementation and verification of the control framework -- 5. Characterize and verify closed-loop performance -- 6. Conclusions -- Acknowledgment -- References -- 13 - Applications of optimization in the pharmaceutical process development -- 1. Introduction -- 2. Optimization objectives in pharmaceutical process development -- 2.1 Single-objective optimization -- 2.2 Multiobjective optimization -- 3. Applications of data-driven models in optimization -- 3.1 Sampling plans -- 3.2 Building a data-driven model -- 3.3 Response surface methodology -- 3.4 Partial least squares -- 3.5 Artificial neural network -- 3.6 Kriging -- 3.7 Model validation -- 3.8 Data-driven models in support of optimization needs -- 4. Optimization methods in pharmaceutical processes -- 4.1 Derivative-based methods -- 4.2 Successive quadratic programming -- 4.3 Derivative-free methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4 Direct search methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmaceutical industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manufacturing processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drug development</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oka, Sarang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Muzzio, Fernando</subfield><subfield code="t">How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems</subfield><subfield code="d">San Diego : Elsevier Science & Technology,c2022</subfield><subfield code="z">9780128134795</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034007040</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6942630</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048632020 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:16:05Z |
indexdate | 2024-07-10T09:44:32Z |
institution | BVB |
isbn | 9780128134801 9780128134795 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034007040 |
oclc_num | 1311333267 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (444 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Elsevier Science & Technology |
record_format | marc |
series2 | Expertise in Pharmaceutical Process Technology Ser |
spelling | Muzzio, Fernando Verfasser aut How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems San Diego Elsevier Science & Technology 2022 ©2022 1 Online-Ressource (444 Seiten) txt rdacontent c rdamedia cr rdacarrier Expertise in Pharmaceutical Process Technology Ser Front Cover -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- Copyright -- Dedication -- Contents -- Contributors -- About the Expertise in Pharmaceutical Process Technology Series -- Format -- Subject matter -- Target audience -- Foreword -- 1 - Introduction -- 1. Foreword-our journey in CM -- 2. The many benefits of continuous solid dose manufacturing -- 2.1 Improving product quality -- 2.2 Faster product and process development -- 2.3 Faster responses to shortages and emergencies -- 2.4 Potential for reducing drug prices -- 3. The engineering toolbox, applied to pharmaceutical manufacturing process design -- References -- 2 - Characterization of material properties -- 1. Introduction -- 2. Summary of the characterization techniques and their description -- 2.1 Bulk density test -- 2.2 Particle size distribution test -- 2.3 Powder flow measurements -- 2.4 Powder hydrophobicity/wettability measurements -- 2.5 Electrostatic measurement (impedance test) -- 3. Developing a material property database -- 4. Multivariate analysis -- 4.1 Principal component analysis -- 4.2 Clustering analysis -- 5. Application of material property databases -- 5.1 Identifying similar materials as surrogates for process development -- 5.2 Predicting process performance using material property databases -- 6. Conclusions -- References -- 3 - Loss-in-weight feeding -- 1. Introduction -- 2. Characterization of loss-in-weight feeders -- 2.1 Gravimetric feeding performance -- 2.1.1 Materials and equipment -- 2.1.2 Methodology -- 2.1.3 Experimental setup -- 2.1.4 General volumetric test run procedure -- 2.1.5 General gravimetric test run procedure -- 2.1.6 Analysis and filtering -- 2.1.7 Results and discussion -- 2.2 Ideal design space for loss-in-weight feeders 2.2.1 Materials and experimental setup -- 2.2.2 Methods -- 2.3 Feed rate deviation caused by hopper refill -- 2.3.1 Operation during hopper refill -- 2.3.2 Quantifying deviation -- 2.3.3 Effect of refill level -- 2.3.4 Investigation of refill method -- 3. Effect of material flow properties on loss-in-weight feeding -- 4. Modeling of loss-in-weight feeders -- 5. Conclusions -- References -- 4 - Continuous powder mixing and lubrication -- 1. Fundamentals of powder mixing -- 1.1 Type of mixtures -- 1.1.1 Perfect mixture -- 1.1.2 Random mixture -- 1.1.3 Ordered mixtures -- 1.1.4 Textured (segregated) mixtures -- 1.2 Quantifying mixtures -- 1.3 Sampling -- 1.3.1 Sample size -- 1.3.2 Number of samples -- 1.3.3 Sampling in batch versus continuous blenders -- 1.4 Mixing mechanisms -- 2. Modes of powder mixing -- 2.1 Batch powder blenders -- 2.2 Continuous powder blenders -- 3. Mixing in continuous tubular blenders -- 3.1 Residence time distribution in continuous powders blenders -- 3.2 Choosing an appropriate mixer configuration -- 4. Lubrication in continuous tubular blenders -- 4.1 Role of lubricant -- 4.2 Measuring lubricity -- 4.3 Lubricant mixing in continuous blenders -- 4.4 Lubricant mixing in continuous versus batch systems -- 5. Role of delumping in continuous powder mixing -- 6. Other topics -- 6.1 Modeling in continuous blenders -- 6.2 Blending of segregating ingredients in continuous blenders -- 7. Conclusions -- References -- 5 - Continuous dry granulation -- 1. Introduction -- 2. Roller compaction -- 3. Milling -- 3.1 Types of mill -- 3.1.1 Impact mill -- 3.1.2 Shear-compression mill -- 4. Roller compaction characterization and micromechanical modeling -- 4.1 Near-infrared spectroscopy-information on chemical composition and physical properties -- 4.1.1 Near-infrared spectroscopy in monitoring roller compaction 4.2 Computational modeling of compaction -- 5. Granule characterization after milling -- 5.1 Sieve analysis -- 5.2 Laser diffraction -- 5.3 Laser diffraction (Insitec) -- 5.4 Dynamic image analysis -- 5.5 Focused beam reflectance measurement -- 5.6 Bulk density -- 5.7 Tap density -- 5.8 Compressibility index and Hausner ratio -- 5.9 Friability -- 5.10 Porosity -- 6. Models for milling -- 6.1 Population balance models -- 6.2 Mechanistic models -- 7. Conclusions -- References -- 6 - A modeling, control, sensing, and experimental overview of continuous wet granulation -- 1. Introduction -- 2. Experimental design -- 2.1 Residence time distribution in continuous wet granulation -- 3. Process modeling -- 4. Case studies -- 4.1 Twin screw granulator -- 4.2 High shear granulator -- 5. Conclusions -- References -- 7 - Continuous fluid bed processing -- 1. Introduction -- 2. Basics of fluidized beds -- 3. Drying background and theory -- 4. Granulation drying background and theory -- 5. Commercial application -- 6. Why batch -- 7. Continuous processes in other industries -- 8. Traditional continuous fluid bed design -- 9. Adaptation to pharmaceutical processing -- 10. Traceability -- 11. Other continuous granulation methods -- 12. Summary and conclusion -- 8 - Continuous tableting -- 1. Fundamentals of tableting -- 2. Phenomenological modeling of compaction -- 3. Characterization of compaction operations -- 4. Characterization of tablets in continuous manufacturing -- 4.1 Models for composition -- 4.2 Models for hardness prediction -- 4.2.1 Ultrasound testing -- 4.2.2 Infrared thermography -- 4.2.3 Models for dissolution prediction -- 5. Control -- 5.1 Inbuilt tablet press control strategy -- 5.2 Advanced model predictive control system -- 5.3 Design of an advanced model predictive control system for a tablet press 5.4 Implementation of advanced model predictive control system into tablet press -- 5.5 Supervisory control system to integrate tablet press with CM line -- 6. Designing an experimental plan for continuous tableting -- 7. Conclusions -- References -- 9 - Continuous film coating within continuous oral solid dose manufacturing -- 1. Fundamentals of continuous coating within continuous manufacturing -- 2. Goals of continuous film coating -- 2.1 Cosmetic coatings -- 2.2 Functional coatings -- 2.3 Basics of the film coating process -- 2.3.1 The process (recipe) -- 2.3.2 The platform (coater) -- 2.3.2.1 Application of the film solution -- 2.3.2.2 Drying the tablets -- 2.3.2.3 Mixing the tablets -- 2.3.3 The formulation (solution/suspension) -- 2.3.3.1 Solutions for cosmetic film coating -- 2.3.3.2 Solutions and suspensions for enteric coating -- 3. Expectations of continuous coaters -- 3.1 Change in manufacturing strategies -- 3.2 Supporting factors -- 3.3 Partnering on the continuous manufacturing coating projects -- 3.4 Special demands of the continuous coating process -- 4. Types of batch and continuous coaters used in continuous processes -- 4.1 Traditional "batch" coaters in continuous manufacturing -- 4.2 The GEA ConsiGma coater -- 4.3 Classic high-throughput continuous coaters -- 4.4 A hybrid: Driaconti-T multichambered continuous coater -- 4.5 Overall comparison -- 4.6 Considerations for production and other aspects -- 5. Controls and process analytical technology -- 5.1 Simulation and modeling of the process -- 6. Conclusions -- References -- Further reading -- 10 - Role of process analytical technology in continuous manufacturing -- 1. Introduction/background -- 2. Method development and life cycle considerations for PAT in CM -- 2.1 Instrument, sampling, reference values, multivariate analysis, sensitivity 2.2 Sensor location and placement for calibration model building -- 2.2.1 Sampling volume -- 2.3 PAT method validation overview in CM -- 2.4 Maintenance overview -- 3. PAT in a CM commercial control strategy -- 4. Case studies -- 4.1 Continuous blending -- 4.2 Granulation -- 4.3 Residence time distribution determination in feeders and blenders -- 4.3.1 Feeders -- 4.3.2 Blenders -- 4.4 Tablets: dissolution alternatives -- 4.5 Chemical imaging: offline uniformity, API distribution -- 5. Conclusions -- References -- 11 - Developing process models of an open-loop integrated system -- 1. Introduction -- 2. Loss-in-weight feeder -- 3. Continuous blender -- 4. Roller compactor -- 5. Continuous wet granulator -- 6. Fluidized bed dryer -- 7. Conical screen mill -- 8. Tablet press -- 9. Integration -- 10. Conclusions -- References -- 12 - Integrated process control -- 1. Introduction -- 2. Design of the control architecture -- 3. Develop integrated model of closed-loop system -- 4. Implementation and verification of the control framework -- 5. Characterize and verify closed-loop performance -- 6. Conclusions -- Acknowledgment -- References -- 13 - Applications of optimization in the pharmaceutical process development -- 1. Introduction -- 2. Optimization objectives in pharmaceutical process development -- 2.1 Single-objective optimization -- 2.2 Multiobjective optimization -- 3. Applications of data-driven models in optimization -- 3.1 Sampling plans -- 3.2 Building a data-driven model -- 3.3 Response surface methodology -- 3.4 Partial least squares -- 3.5 Artificial neural network -- 3.6 Kriging -- 3.7 Model validation -- 3.8 Data-driven models in support of optimization needs -- 4. Optimization methods in pharmaceutical processes -- 4.1 Derivative-based methods -- 4.2 Successive quadratic programming -- 4.3 Derivative-free methods 4.4 Direct search methods Pharmaceutical industry Manufacturing processes Drug development Electronic books Oka, Sarang Sonstige oth Erscheint auch als Druck-Ausgabe Muzzio, Fernando How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems San Diego : Elsevier Science & Technology,c2022 9780128134795 |
spellingShingle | Muzzio, Fernando How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems Front Cover -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- How to Design and Implement Powder-to-Tablet Continuous Manufacturing Systems -- Copyright -- Dedication -- Contents -- Contributors -- About the Expertise in Pharmaceutical Process Technology Series -- Format -- Subject matter -- Target audience -- Foreword -- 1 - Introduction -- 1. Foreword-our journey in CM -- 2. The many benefits of continuous solid dose manufacturing -- 2.1 Improving product quality -- 2.2 Faster product and process development -- 2.3 Faster responses to shortages and emergencies -- 2.4 Potential for reducing drug prices -- 3. The engineering toolbox, applied to pharmaceutical manufacturing process design -- References -- 2 - Characterization of material properties -- 1. Introduction -- 2. Summary of the characterization techniques and their description -- 2.1 Bulk density test -- 2.2 Particle size distribution test -- 2.3 Powder flow measurements -- 2.4 Powder hydrophobicity/wettability measurements -- 2.5 Electrostatic measurement (impedance test) -- 3. Developing a material property database -- 4. Multivariate analysis -- 4.1 Principal component analysis -- 4.2 Clustering analysis -- 5. Application of material property databases -- 5.1 Identifying similar materials as surrogates for process development -- 5.2 Predicting process performance using material property databases -- 6. Conclusions -- References -- 3 - Loss-in-weight feeding -- 1. Introduction -- 2. Characterization of loss-in-weight feeders -- 2.1 Gravimetric feeding performance -- 2.1.1 Materials and equipment -- 2.1.2 Methodology -- 2.1.3 Experimental setup -- 2.1.4 General volumetric test run procedure -- 2.1.5 General gravimetric test run procedure -- 2.1.6 Analysis and filtering -- 2.1.7 Results and discussion -- 2.2 Ideal design space for loss-in-weight feeders 2.2.1 Materials and experimental setup -- 2.2.2 Methods -- 2.3 Feed rate deviation caused by hopper refill -- 2.3.1 Operation during hopper refill -- 2.3.2 Quantifying deviation -- 2.3.3 Effect of refill level -- 2.3.4 Investigation of refill method -- 3. Effect of material flow properties on loss-in-weight feeding -- 4. Modeling of loss-in-weight feeders -- 5. Conclusions -- References -- 4 - Continuous powder mixing and lubrication -- 1. Fundamentals of powder mixing -- 1.1 Type of mixtures -- 1.1.1 Perfect mixture -- 1.1.2 Random mixture -- 1.1.3 Ordered mixtures -- 1.1.4 Textured (segregated) mixtures -- 1.2 Quantifying mixtures -- 1.3 Sampling -- 1.3.1 Sample size -- 1.3.2 Number of samples -- 1.3.3 Sampling in batch versus continuous blenders -- 1.4 Mixing mechanisms -- 2. Modes of powder mixing -- 2.1 Batch powder blenders -- 2.2 Continuous powder blenders -- 3. Mixing in continuous tubular blenders -- 3.1 Residence time distribution in continuous powders blenders -- 3.2 Choosing an appropriate mixer configuration -- 4. Lubrication in continuous tubular blenders -- 4.1 Role of lubricant -- 4.2 Measuring lubricity -- 4.3 Lubricant mixing in continuous blenders -- 4.4 Lubricant mixing in continuous versus batch systems -- 5. Role of delumping in continuous powder mixing -- 6. Other topics -- 6.1 Modeling in continuous blenders -- 6.2 Blending of segregating ingredients in continuous blenders -- 7. Conclusions -- References -- 5 - Continuous dry granulation -- 1. Introduction -- 2. Roller compaction -- 3. Milling -- 3.1 Types of mill -- 3.1.1 Impact mill -- 3.1.2 Shear-compression mill -- 4. Roller compaction characterization and micromechanical modeling -- 4.1 Near-infrared spectroscopy-information on chemical composition and physical properties -- 4.1.1 Near-infrared spectroscopy in monitoring roller compaction 4.2 Computational modeling of compaction -- 5. Granule characterization after milling -- 5.1 Sieve analysis -- 5.2 Laser diffraction -- 5.3 Laser diffraction (Insitec) -- 5.4 Dynamic image analysis -- 5.5 Focused beam reflectance measurement -- 5.6 Bulk density -- 5.7 Tap density -- 5.8 Compressibility index and Hausner ratio -- 5.9 Friability -- 5.10 Porosity -- 6. Models for milling -- 6.1 Population balance models -- 6.2 Mechanistic models -- 7. Conclusions -- References -- 6 - A modeling, control, sensing, and experimental overview of continuous wet granulation -- 1. Introduction -- 2. Experimental design -- 2.1 Residence time distribution in continuous wet granulation -- 3. Process modeling -- 4. Case studies -- 4.1 Twin screw granulator -- 4.2 High shear granulator -- 5. Conclusions -- References -- 7 - Continuous fluid bed processing -- 1. Introduction -- 2. Basics of fluidized beds -- 3. Drying background and theory -- 4. Granulation drying background and theory -- 5. Commercial application -- 6. Why batch -- 7. Continuous processes in other industries -- 8. Traditional continuous fluid bed design -- 9. Adaptation to pharmaceutical processing -- 10. Traceability -- 11. Other continuous granulation methods -- 12. Summary and conclusion -- 8 - Continuous tableting -- 1. Fundamentals of tableting -- 2. Phenomenological modeling of compaction -- 3. Characterization of compaction operations -- 4. Characterization of tablets in continuous manufacturing -- 4.1 Models for composition -- 4.2 Models for hardness prediction -- 4.2.1 Ultrasound testing -- 4.2.2 Infrared thermography -- 4.2.3 Models for dissolution prediction -- 5. Control -- 5.1 Inbuilt tablet press control strategy -- 5.2 Advanced model predictive control system -- 5.3 Design of an advanced model predictive control system for a tablet press 5.4 Implementation of advanced model predictive control system into tablet press -- 5.5 Supervisory control system to integrate tablet press with CM line -- 6. Designing an experimental plan for continuous tableting -- 7. Conclusions -- References -- 9 - Continuous film coating within continuous oral solid dose manufacturing -- 1. Fundamentals of continuous coating within continuous manufacturing -- 2. Goals of continuous film coating -- 2.1 Cosmetic coatings -- 2.2 Functional coatings -- 2.3 Basics of the film coating process -- 2.3.1 The process (recipe) -- 2.3.2 The platform (coater) -- 2.3.2.1 Application of the film solution -- 2.3.2.2 Drying the tablets -- 2.3.2.3 Mixing the tablets -- 2.3.3 The formulation (solution/suspension) -- 2.3.3.1 Solutions for cosmetic film coating -- 2.3.3.2 Solutions and suspensions for enteric coating -- 3. Expectations of continuous coaters -- 3.1 Change in manufacturing strategies -- 3.2 Supporting factors -- 3.3 Partnering on the continuous manufacturing coating projects -- 3.4 Special demands of the continuous coating process -- 4. Types of batch and continuous coaters used in continuous processes -- 4.1 Traditional "batch" coaters in continuous manufacturing -- 4.2 The GEA ConsiGma coater -- 4.3 Classic high-throughput continuous coaters -- 4.4 A hybrid: Driaconti-T multichambered continuous coater -- 4.5 Overall comparison -- 4.6 Considerations for production and other aspects -- 5. Controls and process analytical technology -- 5.1 Simulation and modeling of the process -- 6. Conclusions -- References -- Further reading -- 10 - Role of process analytical technology in continuous manufacturing -- 1. Introduction/background -- 2. Method development and life cycle considerations for PAT in CM -- 2.1 Instrument, sampling, reference values, multivariate analysis, sensitivity 2.2 Sensor location and placement for calibration model building -- 2.2.1 Sampling volume -- 2.3 PAT method validation overview in CM -- 2.4 Maintenance overview -- 3. PAT in a CM commercial control strategy -- 4. Case studies -- 4.1 Continuous blending -- 4.2 Granulation -- 4.3 Residence time distribution determination in feeders and blenders -- 4.3.1 Feeders -- 4.3.2 Blenders -- 4.4 Tablets: dissolution alternatives -- 4.5 Chemical imaging: offline uniformity, API distribution -- 5. Conclusions -- References -- 11 - Developing process models of an open-loop integrated system -- 1. Introduction -- 2. Loss-in-weight feeder -- 3. Continuous blender -- 4. Roller compactor -- 5. Continuous wet granulator -- 6. Fluidized bed dryer -- 7. Conical screen mill -- 8. Tablet press -- 9. Integration -- 10. Conclusions -- References -- 12 - Integrated process control -- 1. Introduction -- 2. Design of the control architecture -- 3. Develop integrated model of closed-loop system -- 4. Implementation and verification of the control framework -- 5. Characterize and verify closed-loop performance -- 6. Conclusions -- Acknowledgment -- References -- 13 - Applications of optimization in the pharmaceutical process development -- 1. Introduction -- 2. Optimization objectives in pharmaceutical process development -- 2.1 Single-objective optimization -- 2.2 Multiobjective optimization -- 3. Applications of data-driven models in optimization -- 3.1 Sampling plans -- 3.2 Building a data-driven model -- 3.3 Response surface methodology -- 3.4 Partial least squares -- 3.5 Artificial neural network -- 3.6 Kriging -- 3.7 Model validation -- 3.8 Data-driven models in support of optimization needs -- 4. Optimization methods in pharmaceutical processes -- 4.1 Derivative-based methods -- 4.2 Successive quadratic programming -- 4.3 Derivative-free methods 4.4 Direct search methods Pharmaceutical industry Manufacturing processes Drug development |
title | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_auth | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_exact_search | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_exact_search_txtP | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_full | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_fullStr | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_full_unstemmed | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_short | How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems |
title_sort | how to design and implement powder to tablet continuous manufacturing systems |
topic | Pharmaceutical industry Manufacturing processes Drug development |
topic_facet | Pharmaceutical industry Manufacturing processes Drug development |
work_keys_str_mv | AT muzziofernando howtodesignandimplementpowdertotabletcontinuousmanufacturingsystems AT okasarang howtodesignandimplementpowdertotabletcontinuousmanufacturingsystems |