Intelligent sensing and communications for internet of everything:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London
Academic Press, an imprint of Elsevier
[2022]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | ix, 345 Seiten Illustrationen, Diagramme 24 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048630992 | ||
003 | DE-604 | ||
005 | 20230321 | ||
007 | t| | ||
008 | 230104s2022 xx a||| |||| 00||| eng d | ||
015 | |a GBC1I4919 |2 dnb | ||
020 | |z 0323856551 |9 0-323-85655-1 | ||
020 | |z 9780323856553 |9 978-0-323-85655-3 | ||
035 | |a (OCoLC)1374564250 | ||
035 | |a (DE-599)BVBBV048630992 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
084 | |a ZN 6560 |0 (DE-625)157572: |2 rvk | ||
100 | 1 | |a Zhu, Zhengyu |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1283874660 |4 aut | |
245 | 1 | 0 | |a Intelligent sensing and communications for internet of everything |c Zhengyu Zhu, Zheng Chu, Xingwang Li |
264 | 1 | |a London |b Academic Press, an imprint of Elsevier |c [2022] | |
300 | |a ix, 345 Seiten |b Illustrationen, Diagramme |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Telecommunication | |
650 | 4 | |a Internet of things | |
650 | 4 | |a Telecommunications | |
650 | 4 | |a Télécommunications | |
650 | 4 | |a Internet des objets | |
650 | 7 | |a telecommunications |2 aat | |
650 | 7 | |a Internet of things |2 fast | |
650 | 7 | |a Telecommunication |2 fast | |
650 | 0 | 7 | |a Internet der Dinge |0 (DE-588)7713781-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Internet der Dinge |0 (DE-588)7713781-4 |D s |
689 | 0 | 1 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chu, Zheng |d ca. 20./21. Jh. |e Sonstige |0 (DE-588)1283874954 |4 oth | |
700 | 1 | |a Li, Xingwang |e Sonstige |0 (DE-588)1283875209 |4 oth | |
776 | 0 | 8 | |i ebook version |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034006022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034006022 |
Datensatz im Suchindex
_version_ | 1818330298623983616 |
---|---|
adam_text |
Contents CHAPTER 1 Background and introduction. і Zhengyu Zhu, Zheng Chu, and Xingwang Li 1.1 Background. 1.2 Introduction. 1.3 1.2.1 Progress of 6G around the world. 1.2.2 6G vision and its performance indicators. 1.2.3 Potential key technologies of 6G. Suggestions to promote 6G research and development. CHAPTER 2 Three major operating scenarios of 5G: eMBB, mMTC, URLLC. 1 2 2 5 8 12 15 Zhengyu Zhu, Xingwang Li, and Zheng Chu Introduction. 2.1.1 The comprehensive introduction for eMBB. 2.1.2 The comprehensive introduction for mMTC . 2.1.3 The comprehensive introduction for URLLC. 2.2 Opportunistic spectrum sharing for D2D-based URLLC. 2.2.1 System model. 2.2.2 Optimal resource allocation. 2.2.3 Performance analysis . 2.2.4 Numerical results . 2.2.5 Performance analysis . 2.2.6
Conclusion. 2.3 Cooperative wireless-powered NOMA relaying for B5G loT networks with hardware impairments and channel estimation errors. 2.3.1 System model. 2.3.2 Performance analysis . 2.3.3 Exact outage probability. 2.3.4 Asymptotic OP. 2.3.5 Energy efficiency (EE) . 2.3.6 Power optimization for the sum rate . 2.3.7 Performance evaluation results anddiscussion. 2.3.8 Conclusion. 2.4 I/Q imbalance aware nonlinear wireless-powered relaying of B5G networks: security and reliability analysis . 2.4.1 System model. 2.1 15 17 17 18 20 20 24 26 30 35 37 37 38 43 43 46 48 49 51 56 56 57 V
vi Contents 2.4.2 Performance analysis . 2.4.3 Outage probability analysis. 2.4.4 Intercept probability analysis. 2.4.5 Conclusions . References. 60 60 63 71 72 CHAPTER 3 Backscatter technology and intelligent reflecting technology surface technology in the Internet of Things. 77 Zhengyu Zhu, Zheng Chu, and Xingwang Li Introduction . 3.1.1 The classification of backscatter communication systems. 78 3.1.2 Fundamental of backscattermodulations. 3.1.3 Interplay of backscatterwith other technologies. 3.1.4 The physical layer security . 3.1.5 Intelligent reflecting surface assisted wireless powered loT networks. 86 3.2 Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance . 3.2.1 System model. 3.2.2 Performance analysis . 3.2.3 Numerical results
. 3.2.4 Conclusions . 3.3 Hardware impaired ambient backscatter NOMA systems: reliability and security. 97 3.3.1 System model. 3.3.2 Performance analysis . 3.3.3 Numerical results . 3.3.4 Conclusions . 3.4 Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things. 116 3.4.1 System model. 3.4.2 Performance analysis . 3.4.3 Numerical results . 3.4.4 Conclusions . 3.5 Future research prospects. 3.5.1 Security and privacy. 3.5.2 Backscatter communication circuitry design . 3.5.3 EM energy harvester. 3.5.4 Hardware impairments . References. 3.1 77
81 82 85 87 87 90 94 97 97 100 112 116 116 118 126 129 130 130 130 130 130 131
Contents CHAPTER 4 Unmanned aerial vehicle technology in loE. 137 Zhengyu Zhu, Zheng Chu, and Xingwang Li 4.1 4.2 4.3 4.4 4.5 Introduction. 4.1.1 Research status and development trend . 4.1.2 Research on transmission theory of UAV Communication System . 138 4.1.3 Physical layer security of wireless power supply network based on IRS-UAV. 139 4.1.4 Channel estimation and beamforming for UAV Communication System . 139 Energy efficiency characterization in heterogeneous loT system with UAV swarms based on wireless power transfer . . 4.2.1 System model. 4.2.2 Transmission probability of the IoT-Ts. 4.2.3 Coverage probability. 4.2.4 Energy efficiency . 4.2.5 Numerical results . 4.2.6 Conclusion. UAV-aided multiway NOMA networks with residual hardware impairments. 158 4.3.1 System model. 4.3.2 Achievable sum rate analysis. 4.3.3 Numerical results
discussion. 4.3.4 Conclusion. A unified framework for HS-UAV NOMA networks: performance analysis and location optimization. 167 4.4.1 System model and fading model . 4.4.2 Outage probability analysis. 4.4.3 Outage probability . 4.4.4 Location optimization. 4.4.5 Numerical results . 4.4.6 Conclusion. Future research prospects. References. 137 138 140 140 147 150 152 153 158 158 161 164 167 168 172 173 175 178 181 182 182 CHAPTER 5 MmWave technology and Terahertz technology loT communications. 185 Zhengyu Zhu, Xingwang Li, and Wanming Hao 5.1 Introduction. 5.1.1 mmWave technology loT communications . 5.1.2 Terahertz technology loT communications . 5.1.3 MIMO-OFDMA Terahertz loT networks. 185 186 188 190 vii
viii Contents Hybrid precoding design for wideband THz massive MIMO-OFDM systems with beam squint. 191 5.2.1 Antenna structure and hybrid precoding design. 192 5.2.2 Simulation results. 196 5.2.3 Conclusions . 196 5.3 Robust beamforming designs in secure MIMO SWIPT loT networks with a non-linear channel model. 197 5.3.1 System model. 198 5.3.2 Problem formulationand robust design methods. 200 5.3.3 Computational complexity . 214 5.3.4 Simulation results.214 5.3.5 Conclusion. 218 5.4 Robust design for intelligent reflecting surface assisted MIMO-OFDMA Terahertz loT networks. 219 5.4.1 System model. 219 5.4.2 Solution of the weighted sum rate optimization problem 222 5.4.3 Extension to imperfect CSIs from 1RS to users . 227 5.4.4 Numerical results . 231 5.4.5 Conclusion. 236 5.4.6 Proof of Theorem 5.4.1. 237
References. 238 5.2 CHAPTER 6 Artificial intelligence technology in theInternet of things . 245 Zhengyu Zhu, Miao Zhang, and Wanming Hao 6.1 6.2 6.3 Introduction . Exploiting deep learning for secure transmission in an underlay cognitive radio network. 6.2.1 System model and problem formulation . 6.2.2 Conventional optimization based power allocation approach. 6.2.3 Power allocation framework based on NN. 6.2.4 Simulation results. 6.2.5 Discussions. 6.2.6 Conclusion. Q-learning based task offloading and resources optimization for a collaborative computing system. 269 6.3.1 System model and problem formulation . 6.3.2 Wireless communication model. 6.3.3 MDP model of offloading decision process. 6.3.4 Communication and computation resources optimization. 6.3.5 QLOF algorithm for optimal offloading scheme. 6.3.6 Simulation
results. 245 246 248 249 252 257 267 268 269 272 273 278 283 284
Contents 6.3.7 The impacts of computing frequency of edge cloud . 290 6.3.8 Conclusion. 293 References. 294 CHAPTER 7 Fog/edge computing technology and big data system with loT . 299 Zhengyu Zhu, Ming Zeng, and Wanming Hao Introduction. 7.1.1 MEC: overview and resource allocation. 7.1.2 Massive MIMO-assisted MEC. 7.2 Edge cache-assisted secure low-latency millimeter wave transmission . 7.2.1 Related works. 7.2.2 System model and problem formulation . 7.2.3 Problem formulation. 7.2.4 Numerical results . 7.2.5 Conclusion. 7.3 Delay minimization for massive MIMO assisted mobile edge computing. 323 7.3.1 System model and problem formulation . 7.3.2 Problem formulation. 7.3.3 Joint resource allocation for the perfect CSI case. 7.3.4 Joint resource allocation
for the imperfect CSI case . . 7.3.5 Numerical results . 7.3.6 Conclusion. 7.4 Future research directions . 7.4.1 NOMA. 7.4.2 MmWave . 7.4.3 HetNets . References. 7.1 299 300 302 304 304 305 310 317 323 324 325 326 327 329 332 332 332 333 333 333 Index . 337 ix |
adam_txt |
Contents CHAPTER 1 Background and introduction. і Zhengyu Zhu, Zheng Chu, and Xingwang Li 1.1 Background. 1.2 Introduction. 1.3 1.2.1 Progress of 6G around the world. 1.2.2 6G vision and its performance indicators. 1.2.3 Potential key technologies of 6G. Suggestions to promote 6G research and development. CHAPTER 2 Three major operating scenarios of 5G: eMBB, mMTC, URLLC. 1 2 2 5 8 12 15 Zhengyu Zhu, Xingwang Li, and Zheng Chu Introduction. 2.1.1 The comprehensive introduction for eMBB. 2.1.2 The comprehensive introduction for mMTC . 2.1.3 The comprehensive introduction for URLLC. 2.2 Opportunistic spectrum sharing for D2D-based URLLC. 2.2.1 System model. 2.2.2 Optimal resource allocation. 2.2.3 Performance analysis . 2.2.4 Numerical results . 2.2.5 Performance analysis . 2.2.6
Conclusion. 2.3 Cooperative wireless-powered NOMA relaying for B5G loT networks with hardware impairments and channel estimation errors. 2.3.1 System model. 2.3.2 Performance analysis . 2.3.3 Exact outage probability. 2.3.4 Asymptotic OP. 2.3.5 Energy efficiency (EE) . 2.3.6 Power optimization for the sum rate . 2.3.7 Performance evaluation results anddiscussion. 2.3.8 Conclusion. 2.4 I/Q imbalance aware nonlinear wireless-powered relaying of B5G networks: security and reliability analysis . 2.4.1 System model. 2.1 15 17 17 18 20 20 24 26 30 35 37 37 38 43 43 46 48 49 51 56 56 57 V
vi Contents 2.4.2 Performance analysis . 2.4.3 Outage probability analysis. 2.4.4 Intercept probability analysis. 2.4.5 Conclusions . References. 60 60 63 71 72 CHAPTER 3 Backscatter technology and intelligent reflecting technology surface technology in the Internet of Things. 77 Zhengyu Zhu, Zheng Chu, and Xingwang Li Introduction . 3.1.1 The classification of backscatter communication systems. 78 3.1.2 Fundamental of backscattermodulations. 3.1.3 Interplay of backscatterwith other technologies. 3.1.4 The physical layer security . 3.1.5 Intelligent reflecting surface assisted wireless powered loT networks. 86 3.2 Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance . 3.2.1 System model. 3.2.2 Performance analysis . 3.2.3 Numerical results
. 3.2.4 Conclusions . 3.3 Hardware impaired ambient backscatter NOMA systems: reliability and security. 97 3.3.1 System model. 3.3.2 Performance analysis . 3.3.3 Numerical results . 3.3.4 Conclusions . 3.4 Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things. 116 3.4.1 System model. 3.4.2 Performance analysis . 3.4.3 Numerical results . 3.4.4 Conclusions . 3.5 Future research prospects. 3.5.1 Security and privacy. 3.5.2 Backscatter communication circuitry design . 3.5.3 EM energy harvester. 3.5.4 Hardware impairments . References. 3.1 77
81 82 85 87 87 90 94 97 97 100 112 116 116 118 126 129 130 130 130 130 130 131
Contents CHAPTER 4 Unmanned aerial vehicle technology in loE. 137 Zhengyu Zhu, Zheng Chu, and Xingwang Li 4.1 4.2 4.3 4.4 4.5 Introduction. 4.1.1 Research status and development trend . 4.1.2 Research on transmission theory of UAV Communication System . 138 4.1.3 Physical layer security of wireless power supply network based on IRS-UAV. 139 4.1.4 Channel estimation and beamforming for UAV Communication System . 139 Energy efficiency characterization in heterogeneous loT system with UAV swarms based on wireless power transfer . . 4.2.1 System model. 4.2.2 Transmission probability of the IoT-Ts. 4.2.3 Coverage probability. 4.2.4 Energy efficiency . 4.2.5 Numerical results . 4.2.6 Conclusion. UAV-aided multiway NOMA networks with residual hardware impairments. 158 4.3.1 System model. 4.3.2 Achievable sum rate analysis. 4.3.3 Numerical results
discussion. 4.3.4 Conclusion. A unified framework for HS-UAV NOMA networks: performance analysis and location optimization. 167 4.4.1 System model and fading model . 4.4.2 Outage probability analysis. 4.4.3 Outage probability . 4.4.4 Location optimization. 4.4.5 Numerical results . 4.4.6 Conclusion. Future research prospects. References. 137 138 140 140 147 150 152 153 158 158 161 164 167 168 172 173 175 178 181 182 182 CHAPTER 5 MmWave technology and Terahertz technology loT communications. 185 Zhengyu Zhu, Xingwang Li, and Wanming Hao 5.1 Introduction. 5.1.1 mmWave technology loT communications . 5.1.2 Terahertz technology loT communications . 5.1.3 MIMO-OFDMA Terahertz loT networks. 185 186 188 190 vii
viii Contents Hybrid precoding design for wideband THz massive MIMO-OFDM systems with beam squint. 191 5.2.1 Antenna structure and hybrid precoding design. 192 5.2.2 Simulation results. 196 5.2.3 Conclusions . 196 5.3 Robust beamforming designs in secure MIMO SWIPT loT networks with a non-linear channel model. 197 5.3.1 System model. 198 5.3.2 Problem formulationand robust design methods. 200 5.3.3 Computational complexity . 214 5.3.4 Simulation results.214 5.3.5 Conclusion. 218 5.4 Robust design for intelligent reflecting surface assisted MIMO-OFDMA Terahertz loT networks. 219 5.4.1 System model. 219 5.4.2 Solution of the weighted sum rate optimization problem 222 5.4.3 Extension to imperfect CSIs from 1RS to users . 227 5.4.4 Numerical results . 231 5.4.5 Conclusion. 236 5.4.6 Proof of Theorem 5.4.1. 237
References. 238 5.2 CHAPTER 6 Artificial intelligence technology in theInternet of things . 245 Zhengyu Zhu, Miao Zhang, and Wanming Hao 6.1 6.2 6.3 Introduction . Exploiting deep learning for secure transmission in an underlay cognitive radio network. 6.2.1 System model and problem formulation . 6.2.2 Conventional optimization based power allocation approach. 6.2.3 Power allocation framework based on NN. 6.2.4 Simulation results. 6.2.5 Discussions. 6.2.6 Conclusion. Q-learning based task offloading and resources optimization for a collaborative computing system. 269 6.3.1 System model and problem formulation . 6.3.2 Wireless communication model. 6.3.3 MDP model of offloading decision process. 6.3.4 Communication and computation resources optimization. 6.3.5 QLOF algorithm for optimal offloading scheme. 6.3.6 Simulation
results. 245 246 248 249 252 257 267 268 269 272 273 278 283 284
Contents 6.3.7 The impacts of computing frequency of edge cloud . 290 6.3.8 Conclusion. 293 References. 294 CHAPTER 7 Fog/edge computing technology and big data system with loT . 299 Zhengyu Zhu, Ming Zeng, and Wanming Hao Introduction. 7.1.1 MEC: overview and resource allocation. 7.1.2 Massive MIMO-assisted MEC. 7.2 Edge cache-assisted secure low-latency millimeter wave transmission . 7.2.1 Related works. 7.2.2 System model and problem formulation . 7.2.3 Problem formulation. 7.2.4 Numerical results . 7.2.5 Conclusion. 7.3 Delay minimization for massive MIMO assisted mobile edge computing. 323 7.3.1 System model and problem formulation . 7.3.2 Problem formulation. 7.3.3 Joint resource allocation for the perfect CSI case. 7.3.4 Joint resource allocation
for the imperfect CSI case . . 7.3.5 Numerical results . 7.3.6 Conclusion. 7.4 Future research directions . 7.4.1 NOMA. 7.4.2 MmWave . 7.4.3 HetNets . References. 7.1 299 300 302 304 304 305 310 317 323 324 325 326 327 329 332 332 332 333 333 333 Index . 337 ix |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zhu, Zhengyu ca. 20./21. Jh |
author_GND | (DE-588)1283874660 (DE-588)1283874954 (DE-588)1283875209 |
author_facet | Zhu, Zhengyu ca. 20./21. Jh |
author_role | aut |
author_sort | Zhu, Zhengyu ca. 20./21. Jh |
author_variant | z z zz |
building | Verbundindex |
bvnumber | BV048630992 |
classification_rvk | ZN 6560 |
ctrlnum | (OCoLC)1374564250 (DE-599)BVBBV048630992 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048630992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230321</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">230104s2022 xx a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBC1I4919</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0323856551</subfield><subfield code="9">0-323-85655-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780323856553</subfield><subfield code="9">978-0-323-85655-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1374564250</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048630992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6560</subfield><subfield code="0">(DE-625)157572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Zhengyu</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1283874660</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intelligent sensing and communications for internet of everything</subfield><subfield code="c">Zhengyu Zhu, Zheng Chu, Xingwang Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 345 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Telecommunications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Télécommunications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet des objets</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">telecommunications</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Internet of things</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Telecommunication</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Internet der Dinge</subfield><subfield code="0">(DE-588)7713781-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Internet der Dinge</subfield><subfield code="0">(DE-588)7713781-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Zheng</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1283874954</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xingwang</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1283875209</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">ebook version</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034006022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034006022</subfield></datafield></record></collection> |
id | DE-604.BV048630992 |
illustrated | Illustrated |
index_date | 2024-07-03T21:15:59Z |
indexdate | 2024-12-13T13:01:44Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034006022 |
oclc_num | 1374564250 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | ix, 345 Seiten Illustrationen, Diagramme 24 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Zhu, Zhengyu ca. 20./21. Jh. Verfasser (DE-588)1283874660 aut Intelligent sensing and communications for internet of everything Zhengyu Zhu, Zheng Chu, Xingwang Li London Academic Press, an imprint of Elsevier [2022] ix, 345 Seiten Illustrationen, Diagramme 24 cm txt rdacontent n rdamedia nc rdacarrier Telecommunication Internet of things Telecommunications Télécommunications Internet des objets telecommunications aat Internet of things fast Telecommunication fast Internet der Dinge (DE-588)7713781-4 gnd rswk-swf Drahtloses Sensorsystem (DE-588)4789222-5 gnd rswk-swf Internet der Dinge (DE-588)7713781-4 s Drahtloses Sensorsystem (DE-588)4789222-5 s DE-604 Chu, Zheng ca. 20./21. Jh. Sonstige (DE-588)1283874954 oth Li, Xingwang Sonstige (DE-588)1283875209 oth ebook version Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034006022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zhu, Zhengyu ca. 20./21. Jh Intelligent sensing and communications for internet of everything Telecommunication Internet of things Telecommunications Télécommunications Internet des objets telecommunications aat Internet of things fast Telecommunication fast Internet der Dinge (DE-588)7713781-4 gnd Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
subject_GND | (DE-588)7713781-4 (DE-588)4789222-5 |
title | Intelligent sensing and communications for internet of everything |
title_auth | Intelligent sensing and communications for internet of everything |
title_exact_search | Intelligent sensing and communications for internet of everything |
title_exact_search_txtP | Intelligent sensing and communications for internet of everything |
title_full | Intelligent sensing and communications for internet of everything Zhengyu Zhu, Zheng Chu, Xingwang Li |
title_fullStr | Intelligent sensing and communications for internet of everything Zhengyu Zhu, Zheng Chu, Xingwang Li |
title_full_unstemmed | Intelligent sensing and communications for internet of everything Zhengyu Zhu, Zheng Chu, Xingwang Li |
title_short | Intelligent sensing and communications for internet of everything |
title_sort | intelligent sensing and communications for internet of everything |
topic | Telecommunication Internet of things Telecommunications Télécommunications Internet des objets telecommunications aat Internet of things fast Telecommunication fast Internet der Dinge (DE-588)7713781-4 gnd Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
topic_facet | Telecommunication Internet of things Telecommunications Télécommunications Internet des objets telecommunications Internet der Dinge Drahtloses Sensorsystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034006022&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhuzhengyu intelligentsensingandcommunicationsforinternetofeverything AT chuzheng intelligentsensingandcommunicationsforinternetofeverything AT lixingwang intelligentsensingandcommunicationsforinternetofeverything |