Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms:
Saved in:
Main Author: | |
---|---|
Format: | Thesis Book |
Language: | English |
Published: |
Düren
Shaker Verlag
2022
|
Series: | Schriftenreihe zur Aufbereitung und Veredlung
Band 80 |
Subjects: | |
Online Access: | Inhaltsverzeichnis Inhaltsverzeichnis |
Physical Description: | VIII, 101 Seiten Illustrationen 30 cm, 170 g |
ISBN: | 9783844084481 3844084487 |
Staff View
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048612022 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 221215s2022 gw a||| m||| 00||| eng d | ||
015 | |a 22,N05 |2 dnb | ||
015 | |a 22,A25 |2 dnb | ||
015 | |a 22,H07 |2 dnb | ||
016 | 7 | |a 1250594677 |2 DE-101 | |
020 | |a 9783844084481 |c Broschur : EUR 45.80 (DE), EUR 45.80 (AT), CHF 57.30 (freier Preis) |9 978-3-8440-8448-1 | ||
020 | |a 3844084487 |9 3-8440-8448-7 | ||
024 | 3 | |a 9783844084481 | |
035 | |a (OCoLC)1333211327 | ||
035 | |a (DE-599)DNB1250594677 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 | ||
082 | 0 | 4 | |a 668.4970286 |2 23/ger |
084 | |a ZQ 9990 |0 (DE-625)158197: |2 rvk | ||
084 | |8 1\p |a 660 |2 23sdnb | ||
100 | 1 | |a Chen, Xiaozheng |e Verfasser |0 (DE-588)125143990X |4 aut | |
245 | 1 | 0 | |a Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |c Xiaozheng Chen |
264 | 1 | |a Düren |b Shaker Verlag |c 2022 | |
300 | |a VIII, 101 Seiten |b Illustrationen |c 30 cm, 170 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Schriftenreihe zur Aufbereitung und Veredlung |v Band 80 | |
502 | |b Dissertation |c RWTH Aachen University |d 2021 | ||
650 | 0 | 7 | |a Kunststoffflasche |0 (DE-588)4755491-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a NIR-Spektroskopie |0 (DE-588)4298282-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sortieren |0 (DE-588)4181872-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Infrarotdetektor |0 (DE-588)4161692-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flaschenetikett |0 (DE-588)4154569-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a plastic sorting | ||
653 | |a machine learning | ||
653 | |a shrink sleeve | ||
653 | |a near-infrared spectroscopy | ||
653 | |a plastic recycling | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Kunststoffflasche |0 (DE-588)4755491-5 |D s |
689 | 0 | 1 | |a Flaschenetikett |0 (DE-588)4154569-2 |D s |
689 | 0 | 2 | |a Sortieren |0 (DE-588)4181872-6 |D s |
689 | 0 | 3 | |a NIR-Spektroskopie |0 (DE-588)4298282-0 |D s |
689 | 0 | 4 | |a Infrarotdetektor |0 (DE-588)4161692-3 |D s |
689 | 0 | 5 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Shaker Verlag |0 (DE-588)1064118135 |4 pbl | |
830 | 0 | |a Schriftenreihe zur Aufbereitung und Veredlung |v Band 80 |w (DE-604)BV014023681 |9 80 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1250594677/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033987376&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033987376 | ||
883 | 2 | |8 1\p |a dnb |d 20220617 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Record in the Search Index
_version_ | 1804184667391262720 |
---|---|
adam_text | CONTENTS
LIST
OF
FIGURES
HI
LIST
OF
TABLES
VI
LIST
OF
ABBREVIATIONS
VII
1
INTRODUCTION
1
2
SHRINK
SLEEVES
AND
PLASTIC
BOTTLE
RECYCLING:
STATE
OF
THE
ART
3
2.1
SHRINK
SLEEVES
..............................................................................................................................
3
2.1.1
MATERIALS
........................................................................................................................
4
2.1.2
PRODUCTION
AND
SHRINK
PROCESS
....................................................................................
6
2.2
OVERVIEW
OF
PLASTIC
BOTTLES
.......................................................................................................
7
2.3
MECHANICAL
RECYCLING
OF
PLASTIC
BOTTLES
....................................................................................
9
2.3.1
COLLECTION
.......................................................................................................................
9
2.3.2
PREENRICHMENT
IN
SORTING
PLANTS
.................................................................................
10
2.3.3
REFINEMENT
IN
RECYCLING
PLANTS
....................................................................................
12
2.4
INFLUENCE
OF
SHRINK
SLEEVES
ON
BOTTLE
RECYCLING
PROCESS
........................................................
12
3
NEAR
INFRARED
(NIR)
SPECTROSCOPY
15
3.1
PHYSICAL
PRINCIPLE
.......................................................................................................................
15
3.1.1
VIBRATIONAL
SPECTROSCOPY
..............................................................................................
15
3.1.2
NIR-SENSITIVE
FUNCTIONALITIES
.......................................................................................
17
3.1.3
APPLICATION
IN
POLYMER
IDENTIFICATION
.......................................................................
18
3.2
DATA
ACQUISITION
...........................................................................................................................
18
3.2.1
NIR
LIGHT
SOURCES
...........................................................................................................
18
3.2.2
NIR
DETECTORS
.................................................................................................................
20
3.3
DATA
ANALYSIS
..............................................................................................................................
20
3.3.1
DATA
PREPROCESSING
.......................................................................................................
21
3.3.2
DATA
CLASSIFICATION
.......................................................................................................
26
3.4
LIMITATION
OF
NIR
IN
POLYMER
SORTING
.......................................................................................
26
4
MACHINE
LEARNING
FOR
CLASSIFICATION
29
4.1
DECISION
TREE
..............................................................................................................................
31
4.1.1
ALGORITHMS
TO
CONSTRUCT
DECISION
TREES
.............................................................
31
4.1.2
RANDOM
FOREST
...............................................................................................................
34
4.2
SUPPORT
VECTOR
MACHINE
(SVM)
.................................................................................................
34
4.2.1
BINARY
CLASSIFICATION
....................................................................................................
34
4.2.2
MULTICLASS
SVM
..........................................................................................................
36
4.3
PARTIAL
LEAST
SQUARES
(PLS)
.......................................................................................................
36
4.3.1
LINEAR
PLS
.....................................................................................................................
37
4.3.2
NONLINEAR
PLS
...............................................................................................................
38
4.3.3
PLS
FOR
CLASSIFICATION
.....................................................................................................
38
4.4
CONVOLUTIONAL
NEURAL
NETWORK
(CNN)
.....................................................................................
40
4.4.1
COMMON
ARTIFICIAL
NEURAL
NETWORK
(ANN)
...................................................................
40
4.4.2
ARCHITECTURE
OF
CNN
.....................................................................................................
42
4.5
APPLICATION
IN
NIR
SPECTROSCOPY
..............................................................................................
44
5
MATERIAL
AND
METHODS
47
5.1
MATERIAL
SELECTION
........................................................................................................................
47
5.1.1
LWP
SAMPLE
SET
..............................................................................................................
47
5.1.2
REFERENCE
SAMPLE
SET
.....................................................................................................
47
5.1.3
POST-CONSUMER
BOTTLES
..................................................................................................
49
5.2
SPECTRA
ACQUISITION
.....................................................................................................................
51
5.3
DATA
PREPROCESSING
.....................................................................................................................
52
5.3.1
SPECTRA
EXTRACTION
...........................................................................................................
52
5.3.2
SPECTRA
PREPROCESSING
..................................................................................................
53
5.4
MACHINE
LEARNING
ALGORITHMS
.....................................................................................................
54
5.4.1
IMPLEMENTATION
...............................................................................................................
55
5.4.2
HYPERPARAMETER
OPTIMIZATION
....................................................................................
57
6
RESULTS
AND
DISCUSSION
61
6.1
TRAINING
AND
SELECTION
OF
CLASSIFICATION
MODELS
........................................................................
61
6.1.1
TRAINING
OF
MODEL
SET
T
1
..............................................................................................
61
6.1.2
TRAINING
OF
MODEL
SET
T2
..............................................................................................
65
6.2
CLASSIFICATION
OF
REFERENCE
BOTTLES
...........................................................................................
67
6.2.1
DIFFERENCE
IN
CLASSIFICATION
ALGORITHMS
........................................................................
67
6.2.2
INFLUENCE
OF
BOTTLE
AND
SLEEVE
PARAMETERS
.................................................................
72
6.3
CLASSIFICATION
OF
POST-CONSUMER
BOTTLES
....................................................................................
80
6.3.1
CLASSIFIERS
IN
MODEL
SET
T1
...........................................................................................
81
6.3.2
CLASSIFIERS
IN
MODEL
SET
T2
...........................................................................................
83
6.3.3
NON-DETECTABLE
CASES
.....................................................................................................
85
7
CONCLUSION
AND
OUTLOOK
91
|
adam_txt |
CONTENTS
LIST
OF
FIGURES
HI
LIST
OF
TABLES
VI
LIST
OF
ABBREVIATIONS
VII
1
INTRODUCTION
1
2
SHRINK
SLEEVES
AND
PLASTIC
BOTTLE
RECYCLING:
STATE
OF
THE
ART
3
2.1
SHRINK
SLEEVES
.
3
2.1.1
MATERIALS
.
4
2.1.2
PRODUCTION
AND
SHRINK
PROCESS
.
6
2.2
OVERVIEW
OF
PLASTIC
BOTTLES
.
7
2.3
MECHANICAL
RECYCLING
OF
PLASTIC
BOTTLES
.
9
2.3.1
COLLECTION
.
9
2.3.2
PREENRICHMENT
IN
SORTING
PLANTS
.
10
2.3.3
REFINEMENT
IN
RECYCLING
PLANTS
.
12
2.4
INFLUENCE
OF
SHRINK
SLEEVES
ON
BOTTLE
RECYCLING
PROCESS
.
12
3
NEAR
INFRARED
(NIR)
SPECTROSCOPY
15
3.1
PHYSICAL
PRINCIPLE
.
15
3.1.1
VIBRATIONAL
SPECTROSCOPY
.
15
3.1.2
NIR-SENSITIVE
FUNCTIONALITIES
.
17
3.1.3
APPLICATION
IN
POLYMER
IDENTIFICATION
.
18
3.2
DATA
ACQUISITION
.
18
3.2.1
NIR
LIGHT
SOURCES
.
18
3.2.2
NIR
DETECTORS
.
20
3.3
DATA
ANALYSIS
.
20
3.3.1
DATA
PREPROCESSING
.
21
3.3.2
DATA
CLASSIFICATION
.
26
3.4
LIMITATION
OF
NIR
IN
POLYMER
SORTING
.
26
4
MACHINE
LEARNING
FOR
CLASSIFICATION
29
4.1
DECISION
TREE
.
31
4.1.1
ALGORITHMS
TO
CONSTRUCT
DECISION
TREES
.
31
4.1.2
RANDOM
FOREST
.
34
4.2
SUPPORT
VECTOR
MACHINE
(SVM)
.
34
4.2.1
BINARY
CLASSIFICATION
.
34
4.2.2
MULTICLASS
SVM
.
36
4.3
PARTIAL
LEAST
SQUARES
(PLS)
.
36
4.3.1
LINEAR
PLS
.
37
4.3.2
NONLINEAR
PLS
.
38
4.3.3
PLS
FOR
CLASSIFICATION
.
38
4.4
CONVOLUTIONAL
NEURAL
NETWORK
(CNN)
.
40
4.4.1
COMMON
ARTIFICIAL
NEURAL
NETWORK
(ANN)
.
40
4.4.2
ARCHITECTURE
OF
CNN
.
42
4.5
APPLICATION
IN
NIR
SPECTROSCOPY
.
44
5
MATERIAL
AND
METHODS
47
5.1
MATERIAL
SELECTION
.
47
5.1.1
LWP
SAMPLE
SET
.
47
5.1.2
REFERENCE
SAMPLE
SET
.
47
5.1.3
POST-CONSUMER
BOTTLES
.
49
5.2
SPECTRA
ACQUISITION
.
51
5.3
DATA
PREPROCESSING
.
52
5.3.1
SPECTRA
EXTRACTION
.
52
5.3.2
SPECTRA
PREPROCESSING
.
53
5.4
MACHINE
LEARNING
ALGORITHMS
.
54
5.4.1
IMPLEMENTATION
.
55
5.4.2
HYPERPARAMETER
OPTIMIZATION
.
57
6
RESULTS
AND
DISCUSSION
61
6.1
TRAINING
AND
SELECTION
OF
CLASSIFICATION
MODELS
.
61
6.1.1
TRAINING
OF
MODEL
SET
T
1
.
61
6.1.2
TRAINING
OF
MODEL
SET
T2
.
65
6.2
CLASSIFICATION
OF
REFERENCE
BOTTLES
.
67
6.2.1
DIFFERENCE
IN
CLASSIFICATION
ALGORITHMS
.
67
6.2.2
INFLUENCE
OF
BOTTLE
AND
SLEEVE
PARAMETERS
.
72
6.3
CLASSIFICATION
OF
POST-CONSUMER
BOTTLES
.
80
6.3.1
CLASSIFIERS
IN
MODEL
SET
T1
.
81
6.3.2
CLASSIFIERS
IN
MODEL
SET
T2
.
83
6.3.3
NON-DETECTABLE
CASES
.
85
7
CONCLUSION
AND
OUTLOOK
91 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Chen, Xiaozheng |
author_GND | (DE-588)125143990X |
author_facet | Chen, Xiaozheng |
author_role | aut |
author_sort | Chen, Xiaozheng |
author_variant | x c xc |
building | Verbundindex |
bvnumber | BV048612022 |
classification_rvk | ZQ 9990 |
ctrlnum | (OCoLC)1333211327 (DE-599)DNB1250594677 |
dewey-full | 668.4970286 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 668 - Technology of other organic products |
dewey-raw | 668.4970286 |
dewey-search | 668.4970286 |
dewey-sort | 3668.4970286 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Chemie / Pharmazie Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02947nam a2200685 cb4500</leader><controlfield tag="001">BV048612022</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221215s2022 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N05</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,A25</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,H07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1250594677</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783844084481</subfield><subfield code="c">Broschur : EUR 45.80 (DE), EUR 45.80 (AT), CHF 57.30 (freier Preis)</subfield><subfield code="9">978-3-8440-8448-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3844084487</subfield><subfield code="9">3-8440-8448-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783844084481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1333211327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1250594677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">668.4970286</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 9990</subfield><subfield code="0">(DE-625)158197:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">660</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaozheng</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)125143990X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms</subfield><subfield code="c">Xiaozheng Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düren</subfield><subfield code="b">Shaker Verlag</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 101 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">30 cm, 170 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Schriftenreihe zur Aufbereitung und Veredlung</subfield><subfield code="v">Band 80</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">RWTH Aachen University</subfield><subfield code="d">2021</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunststoffflasche</subfield><subfield code="0">(DE-588)4755491-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NIR-Spektroskopie</subfield><subfield code="0">(DE-588)4298282-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sortieren</subfield><subfield code="0">(DE-588)4181872-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infrarotdetektor</subfield><subfield code="0">(DE-588)4161692-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flaschenetikett</subfield><subfield code="0">(DE-588)4154569-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plastic sorting</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shrink sleeve</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">near-infrared spectroscopy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plastic recycling</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kunststoffflasche</subfield><subfield code="0">(DE-588)4755491-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Flaschenetikett</subfield><subfield code="0">(DE-588)4154569-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Sortieren</subfield><subfield code="0">(DE-588)4181872-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">NIR-Spektroskopie</subfield><subfield code="0">(DE-588)4298282-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Infrarotdetektor</subfield><subfield code="0">(DE-588)4161692-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Shaker Verlag</subfield><subfield code="0">(DE-588)1064118135</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Schriftenreihe zur Aufbereitung und Veredlung</subfield><subfield code="v">Band 80</subfield><subfield code="w">(DE-604)BV014023681</subfield><subfield code="9">80</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1250594677/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033987376&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033987376</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220617</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048612022 |
illustrated | Illustrated |
index_date | 2024-07-03T21:12:12Z |
indexdate | 2024-07-10T09:42:59Z |
institution | BVB |
institution_GND | (DE-588)1064118135 |
isbn | 9783844084481 3844084487 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033987376 |
oclc_num | 1333211327 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | VIII, 101 Seiten Illustrationen 30 cm, 170 g |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Shaker Verlag |
record_format | marc |
series | Schriftenreihe zur Aufbereitung und Veredlung |
series2 | Schriftenreihe zur Aufbereitung und Veredlung |
spelling | Chen, Xiaozheng Verfasser (DE-588)125143990X aut Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms Xiaozheng Chen Düren Shaker Verlag 2022 VIII, 101 Seiten Illustrationen 30 cm, 170 g txt rdacontent n rdamedia nc rdacarrier Schriftenreihe zur Aufbereitung und Veredlung Band 80 Dissertation RWTH Aachen University 2021 Kunststoffflasche (DE-588)4755491-5 gnd rswk-swf NIR-Spektroskopie (DE-588)4298282-0 gnd rswk-swf Sortieren (DE-588)4181872-6 gnd rswk-swf Infrarotdetektor (DE-588)4161692-3 gnd rswk-swf Flaschenetikett (DE-588)4154569-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf plastic sorting machine learning shrink sleeve near-infrared spectroscopy plastic recycling (DE-588)4113937-9 Hochschulschrift gnd-content Kunststoffflasche (DE-588)4755491-5 s Flaschenetikett (DE-588)4154569-2 s Sortieren (DE-588)4181872-6 s NIR-Spektroskopie (DE-588)4298282-0 s Infrarotdetektor (DE-588)4161692-3 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Shaker Verlag (DE-588)1064118135 pbl Schriftenreihe zur Aufbereitung und Veredlung Band 80 (DE-604)BV014023681 80 B:DE-101 application/pdf https://d-nb.info/1250594677/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033987376&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20220617 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Chen, Xiaozheng Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms Schriftenreihe zur Aufbereitung und Veredlung Kunststoffflasche (DE-588)4755491-5 gnd NIR-Spektroskopie (DE-588)4298282-0 gnd Sortieren (DE-588)4181872-6 gnd Infrarotdetektor (DE-588)4161692-3 gnd Flaschenetikett (DE-588)4154569-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4755491-5 (DE-588)4298282-0 (DE-588)4181872-6 (DE-588)4161692-3 (DE-588)4154569-2 (DE-588)4193754-5 (DE-588)4113937-9 |
title | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |
title_auth | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |
title_exact_search | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |
title_exact_search_txtP | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |
title_full | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms Xiaozheng Chen |
title_fullStr | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms Xiaozheng Chen |
title_full_unstemmed | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms Xiaozheng Chen |
title_short | Enhancing plastic bottle sorting through shrink sleeve detection with near-infrared spectroscopy by validation of machine learning algorithms |
title_sort | enhancing plastic bottle sorting through shrink sleeve detection with near infrared spectroscopy by validation of machine learning algorithms |
topic | Kunststoffflasche (DE-588)4755491-5 gnd NIR-Spektroskopie (DE-588)4298282-0 gnd Sortieren (DE-588)4181872-6 gnd Infrarotdetektor (DE-588)4161692-3 gnd Flaschenetikett (DE-588)4154569-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Kunststoffflasche NIR-Spektroskopie Sortieren Infrarotdetektor Flaschenetikett Maschinelles Lernen Hochschulschrift |
url | https://d-nb.info/1250594677/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033987376&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014023681 |
work_keys_str_mv | AT chenxiaozheng enhancingplasticbottlesortingthroughshrinksleevedetectionwithnearinfraredspectroscopybyvalidationofmachinelearningalgorithms AT shakerverlag enhancingplasticbottlesortingthroughshrinksleevedetectionwithnearinfraredspectroscopybyvalidationofmachinelearningalgorithms |
There is no print copy available.
Indexes