Real algebra: a first course
This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Cham, Switzerland
Springer
[2022]
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Cover Inhaltsverzeichnis |
Zusammenfassung: | This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields. |
Beschreibung: | xii, 206 Seiten Diagramme |
ISBN: | 9783031097997 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048611490 | ||
003 | DE-604 | ||
005 | 20240610 | ||
007 | t | ||
008 | 221215s2022 sz |||| |||| 00||| eng d | ||
020 | |a 9783031097997 |9 978-3-031-09799-7 | ||
024 | 7 | |a 10.1007/978-3-031-09800-0 |2 doi | |
035 | |a (OCoLC)1351788874 | ||
035 | |a (DE-599)KXP1823730221 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h ger | |
044 | |a sz |c XA-CH | ||
049 | |a DE-355 |a DE-739 |a DE-573 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Knebusch, Manfred |d 1939- |e Verfasser |0 (DE-588)1112571175 |4 aut | |
240 | 1 | 0 | |a Einführung in die reelle Algebra |
245 | 1 | 0 | |a Real algebra |b a first course |c Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger |
264 | 1 | |a Cham, Switzerland |b Springer |c [2022] | |
300 | |a xii, 206 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
520 | 3 | |a This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields. | |
650 | 0 | 7 | |a Reelle Algebra |0 (DE-588)4225009-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle algebraische Geometrie |0 (DE-588)4192004-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Algebra. | |
653 | 0 | |a Algebraic fields. | |
653 | 0 | |a Polynomials. | |
653 | 0 | |a Commutative algebra. | |
653 | 0 | |a Commutative rings. | |
653 | 0 | |a Algebraic geometry. | |
689 | 0 | 0 | |a Reelle Algebra |0 (DE-588)4225009-2 |D s |
689 | 0 | 1 | |a Reelle algebraische Geometrie |0 (DE-588)4192004-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Scheiderer, Claus |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1297369750 |4 aut | |
700 | 1 | |a Unger, Thomas |d 1973- |0 (DE-588)128497424 |4 trl | |
775 | 0 | 8 | |i Übersetzung von |a Knebusch, Manfred, 1939 - |t Einführung in die reelle Algebra |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-09800-0 |
856 | 4 | 2 | |m V:DE-576 |m X:SPRINGER |q image/jpeg |u https://swbplus.bsz-bw.de/bsz1820014304cov.jpg |v 20221027181620 |3 Cover |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033986852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805076524604325888 |
---|---|
adam_text |
Contents Ordered Fields and Their Real Closures. 1.1 Orderings and Preorderings of Fields . 1.2 Quadratic Forms, Witt Rings, Signatures . 1.3 Extension of Orderings . 1.4 The Prime Ideals of the Witt Ring . 1.5 Real Closed Fields and Their Field Theoretic Characterization . 1.6 Galois Theoretic Characterization of Real Closed Fields . 1.7 Counting Real Zeroes of Polynomials (without Multiplicities) . 1.8 Conceptual Interpretation of the Sylvester Form . 1.9 Cauchy Index of a Rational Function, Bézoutian and Hankel Forms . 1.10 An Upper Bound for the Number of Real Zeroes (with Multiplicities). 1.11 The Real Closure of an Ordered Field . 1.12 Transfer of Quadratic Forms . 41 46 48 2 Convex Valuation Rings and Real Places. 2.1 Convex Subrings of Ordered Fields
. 2.2 Valuation Rings . 2.3 Integral Elements . 2.4 Valuations, Ideals of Valuation Rings . 2.5 Residue Fields and Subfields of Convex Valuation Rings . 2.6 The Topology of Ordered and Valued Fields . 2.7 The Baer-Krull Theorem . 2.8 Places . 2.9 The Orderings of R(t), R((t)) and QuotR{r} . 2.10 Composition and Decomposition of Places . 2.11 Existence of Real Places of Function Fields . 53 53 57 60 63 70 73 75 78 82 86 89 1 1 1 5 10 13 15 17 19 26 30 xi
Contents xii 2.12 Artin’s Solution of Hilbert’s 17th Problem and the Sign Change Criterion . 3 4 94 The Real Spectrum . 3.1 The Zariski Spectrum. Affine Varieties . 3.2 Reality for Commutative Rings . 3.3 Definition of the Real Spectrum . 3.4 Constructible Subsets and Spectral Spaces . 3.5 The Geometric Setting: Semialgebraic Sets and Filter Theorems . 127 3.6 The Space of Closed Points . 3.7 Specializations and Convex Ideals . 3.8 The Real Spectrum and the Reduced Witt Ring of a Field. 3.9 Preorderings of Rings and Positivstellensätze . 3.10 The Convex Radical Ideals Associated to a Preordering . 3.11 Boundedness . 3.12 Prüfer Rings and the Real Holomorphy Ring of aField . 101 101 110 114 120 135 140 145 150 158 166 174 Recent Developments. 187 4.1 Counting Real Solutions . 187 4.2
Quadratic Forms . 188 4.3 Stellensätze . 189 4.4 Noncommutative Stellensätze . 192 References. 195 Symbol Index. 201 Index. 203 |
adam_txt |
Contents Ordered Fields and Their Real Closures. 1.1 Orderings and Preorderings of Fields . 1.2 Quadratic Forms, Witt Rings, Signatures . 1.3 Extension of Orderings . 1.4 The Prime Ideals of the Witt Ring . 1.5 Real Closed Fields and Their Field Theoretic Characterization . 1.6 Galois Theoretic Characterization of Real Closed Fields . 1.7 Counting Real Zeroes of Polynomials (without Multiplicities) . 1.8 Conceptual Interpretation of the Sylvester Form . 1.9 Cauchy Index of a Rational Function, Bézoutian and Hankel Forms . 1.10 An Upper Bound for the Number of Real Zeroes (with Multiplicities). 1.11 The Real Closure of an Ordered Field . 1.12 Transfer of Quadratic Forms . 41 46 48 2 Convex Valuation Rings and Real Places. 2.1 Convex Subrings of Ordered Fields
. 2.2 Valuation Rings . 2.3 Integral Elements . 2.4 Valuations, Ideals of Valuation Rings . 2.5 Residue Fields and Subfields of Convex Valuation Rings . 2.6 The Topology of Ordered and Valued Fields . 2.7 The Baer-Krull Theorem . 2.8 Places . 2.9 The Orderings of R(t), R((t)) and QuotR{r} . 2.10 Composition and Decomposition of Places . 2.11 Existence of Real Places of Function Fields . 53 53 57 60 63 70 73 75 78 82 86 89 1 1 1 5 10 13 15 17 19 26 30 xi
Contents xii 2.12 Artin’s Solution of Hilbert’s 17th Problem and the Sign Change Criterion . 3 4 94 The Real Spectrum . 3.1 The Zariski Spectrum. Affine Varieties . 3.2 Reality for Commutative Rings . 3.3 Definition of the Real Spectrum . 3.4 Constructible Subsets and Spectral Spaces . 3.5 The Geometric Setting: Semialgebraic Sets and Filter Theorems . 127 3.6 The Space of Closed Points . 3.7 Specializations and Convex Ideals . 3.8 The Real Spectrum and the Reduced Witt Ring of a Field. 3.9 Preorderings of Rings and Positivstellensätze . 3.10 The Convex Radical Ideals Associated to a Preordering . 3.11 Boundedness . 3.12 Prüfer Rings and the Real Holomorphy Ring of aField . 101 101 110 114 120 135 140 145 150 158 166 174 Recent Developments. 187 4.1 Counting Real Solutions . 187 4.2
Quadratic Forms . 188 4.3 Stellensätze . 189 4.4 Noncommutative Stellensätze . 192 References. 195 Symbol Index. 201 Index. 203 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Knebusch, Manfred 1939- Scheiderer, Claus ca. 20./21. Jh |
author2 | Unger, Thomas 1973- |
author2_role | trl |
author2_variant | t u tu |
author_GND | (DE-588)1112571175 (DE-588)1297369750 (DE-588)128497424 |
author_facet | Knebusch, Manfred 1939- Scheiderer, Claus ca. 20./21. Jh Unger, Thomas 1973- |
author_role | aut aut |
author_sort | Knebusch, Manfred 1939- |
author_variant | m k mk c s cs |
building | Verbundindex |
bvnumber | BV048611490 |
classification_rvk | SK 240 |
ctrlnum | (OCoLC)1351788874 (DE-599)KXP1823730221 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048611490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240610</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221215s2022 sz |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031097997</subfield><subfield code="9">978-3-031-09799-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-09800-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1351788874</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1823730221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knebusch, Manfred</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1112571175</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Einführung in die reelle Algebra</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real algebra</subfield><subfield code="b">a first course</subfield><subfield code="c">Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 206 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Algebra</subfield><subfield code="0">(DE-588)4225009-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle algebraische Geometrie</subfield><subfield code="0">(DE-588)4192004-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebraic fields.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Commutative algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Commutative rings.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebraic geometry.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Algebra</subfield><subfield code="0">(DE-588)4225009-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reelle algebraische Geometrie</subfield><subfield code="0">(DE-588)4192004-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheiderer, Claus</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1297369750</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unger, Thomas</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)128497424</subfield><subfield code="4">trl</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Übersetzung von</subfield><subfield code="a">Knebusch, Manfred, 1939 -</subfield><subfield code="t">Einführung in die reelle Algebra</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-09800-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">https://swbplus.bsz-bw.de/bsz1820014304cov.jpg</subfield><subfield code="v">20221027181620</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033986852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV048611490 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:12:04Z |
indexdate | 2024-07-20T05:58:40Z |
institution | BVB |
isbn | 9783031097997 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033986852 |
oclc_num | 1351788874 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-739 DE-573 |
owner_facet | DE-355 DE-BY-UBR DE-739 DE-573 |
physical | xii, 206 Seiten Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Knebusch, Manfred 1939- Verfasser (DE-588)1112571175 aut Einführung in die reelle Algebra Real algebra a first course Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger Cham, Switzerland Springer [2022] xii, 206 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Universitext This book provides an introduction to fundamental methods and techniques of algebra over ordered fields. It is a revised and updated translation of the classic textbook Einführung in die reelle Algebra. Beginning with the basics of ordered fields and their real closures, the book proceeds to discuss methods for counting the number of real roots of polynomials. Followed by a thorough introduction to Krull valuations, this culminates in Artin's solution of Hilbert's 17th Problem. Next, the fundamental concept of the real spectrum of a commutative ring is introduced with applications. The final chapter gives a brief overview of important developments in real algebra and geometry—as far as they are directly related to the contents of the earlier chapters—since the publication of the original German edition. Real Algebra is aimed at advanced undergraduate and beginning graduate students who have a good grounding in linear algebra, field theory and ring theory. It also provides a carefully written reference for specialists in real algebra, real algebraic geometry and related fields. Reelle Algebra (DE-588)4225009-2 gnd rswk-swf Reelle algebraische Geometrie (DE-588)4192004-1 gnd rswk-swf Algebra. Algebraic fields. Polynomials. Commutative algebra. Commutative rings. Algebraic geometry. Reelle Algebra (DE-588)4225009-2 s Reelle algebraische Geometrie (DE-588)4192004-1 s DE-604 Scheiderer, Claus ca. 20./21. Jh. Verfasser (DE-588)1297369750 aut Unger, Thomas 1973- (DE-588)128497424 trl Übersetzung von Knebusch, Manfred, 1939 - Einführung in die reelle Algebra Erscheint auch als Online-Ausgabe 978-3-031-09800-0 V:DE-576 X:SPRINGER image/jpeg https://swbplus.bsz-bw.de/bsz1820014304cov.jpg 20221027181620 Cover Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033986852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Knebusch, Manfred 1939- Scheiderer, Claus ca. 20./21. Jh Real algebra a first course Reelle Algebra (DE-588)4225009-2 gnd Reelle algebraische Geometrie (DE-588)4192004-1 gnd |
subject_GND | (DE-588)4225009-2 (DE-588)4192004-1 |
title | Real algebra a first course |
title_alt | Einführung in die reelle Algebra |
title_auth | Real algebra a first course |
title_exact_search | Real algebra a first course |
title_exact_search_txtP | Real algebra a first course |
title_full | Real algebra a first course Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger |
title_fullStr | Real algebra a first course Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger |
title_full_unstemmed | Real algebra a first course Manfred Knebusch, Claus Scheiderer ; with contributions by Thomas Unger |
title_short | Real algebra |
title_sort | real algebra a first course |
title_sub | a first course |
topic | Reelle Algebra (DE-588)4225009-2 gnd Reelle algebraische Geometrie (DE-588)4192004-1 gnd |
topic_facet | Reelle Algebra Reelle algebraische Geometrie |
url | https://swbplus.bsz-bw.de/bsz1820014304cov.jpg http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033986852&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT knebuschmanfred einfuhrungindiereellealgebra AT scheidererclaus einfuhrungindiereellealgebra AT ungerthomas einfuhrungindiereellealgebra AT knebuschmanfred realalgebraafirstcourse AT scheidererclaus realalgebraafirstcourse AT ungerthomas realalgebraafirstcourse |