Explainable Artificial Intelligence in medical decision support systems:
Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDS...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Stevenage
The Institution of Engineering and Technology
2022
|
Schriftenreihe: | Healthcare technologies series
50 |
Online-Zugang: | TUM01 UBY01 Volltext |
Zusammenfassung: | Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDSS, clinicians are assisted with the identification or elimination of the most likely potential medical causes, which can enable faster discovery of a set of appropriate diagnoses or treatment plans. Explainable AI (XAI) is a "white box" model of artificial intelligence in which the results of the solution can be understood by the users, who can see an estimate of the weighted importance of each feature on the model's predictions, and understand how the different features interact to arrive at a specific decision. This book discusses XAI-based analytics for patient-specific MDSS as well as related security and privacy issues associated with processing patient data. It provides insights into real-world scenarios of the deployment, application, management, and associated benefits of XAI in MDSS. The book outlines the frameworks for MDSS and explores the applicability, prospects, and legal implications of XAI for MDSS. Applications of XAI in MDSS such as XAI for robot-assisted surgeries, medical image segmentation, cancer diagnostics, and diabetes mellitus and heart disease prediction are explored. |
Beschreibung: | 1 Online-Ressource (xx, 521 Seiten) Diagramme |
ISBN: | 9781839536212 |
DOI: | 10.1049/PBHE050E |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048609705 | ||
003 | DE-604 | ||
005 | 20240207 | ||
007 | cr|uuu---uuuuu | ||
008 | 221213s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781839536212 |9 978-1-83953-621-2 | ||
024 | 7 | |a 10.1049/PBHE050E |2 doi | |
035 | |a (ZDB-100-IET)PBHE050E | ||
035 | |a (OCoLC)1355302363 | ||
035 | |a (DE-599)BVBBV048609705 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-706 | ||
245 | 1 | 0 | |a Explainable Artificial Intelligence in medical decision support systems |c edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur |
264 | 1 | |a Stevenage |b The Institution of Engineering and Technology |c 2022 | |
300 | |a 1 Online-Ressource (xx, 521 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Healthcare technologies series |v 50 | |
520 | |a Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDSS, clinicians are assisted with the identification or elimination of the most likely potential medical causes, which can enable faster discovery of a set of appropriate diagnoses or treatment plans. Explainable AI (XAI) is a "white box" model of artificial intelligence in which the results of the solution can be understood by the users, who can see an estimate of the weighted importance of each feature on the model's predictions, and understand how the different features interact to arrive at a specific decision. This book discusses XAI-based analytics for patient-specific MDSS as well as related security and privacy issues associated with processing patient data. It provides insights into real-world scenarios of the deployment, application, management, and associated benefits of XAI in MDSS. The book outlines the frameworks for MDSS and explores the applicability, prospects, and legal implications of XAI for MDSS. Applications of XAI in MDSS such as XAI for robot-assisted surgeries, medical image segmentation, cancer diagnostics, and diabetes mellitus and heart disease prediction are explored. | ||
700 | 1 | |a Imoize, Agbotiname Lucky |0 (DE-588)1240342586 |4 edt | |
700 | 1 | |a Hemanth, D. Jude |d 1981- |0 (DE-588)1202956807 |4 edt | |
700 | 1 | |a Do, Dinh-Thuan |d 1980- |0 (DE-588)1304396150 |4 edt | |
700 | 1 | |a Sur, Samarendra Nath |0 (DE-588)1283021706 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781839536205 |
856 | 4 | 0 | |u https://doi.org/10.1049/PBHE050E |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-100-IET | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033985090 | ||
966 | e | |u https://doi.org/10.1049/PBHE050E |l TUM01 |p ZDB-100-IET |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1049/PBHE050E |l UBY01 |p ZDB-100-IET |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184663245193216 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Imoize, Agbotiname Lucky Hemanth, D. Jude 1981- Do, Dinh-Thuan 1980- Sur, Samarendra Nath |
author2_role | edt edt edt edt |
author2_variant | a l i al ali d j h dj djh d t d dtd s n s sn sns |
author_GND | (DE-588)1240342586 (DE-588)1202956807 (DE-588)1304396150 (DE-588)1283021706 |
author_facet | Imoize, Agbotiname Lucky Hemanth, D. Jude 1981- Do, Dinh-Thuan 1980- Sur, Samarendra Nath |
building | Verbundindex |
bvnumber | BV048609705 |
collection | ZDB-100-IET |
ctrlnum | (ZDB-100-IET)PBHE050E (OCoLC)1355302363 (DE-599)BVBBV048609705 |
doi_str_mv | 10.1049/PBHE050E |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03031nmm a2200397zcb4500</leader><controlfield tag="001">BV048609705</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221213s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781839536212</subfield><subfield code="9">978-1-83953-621-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/PBHE050E</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-100-IET)PBHE050E</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1355302363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048609705</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explainable Artificial Intelligence in medical decision support systems</subfield><subfield code="c">edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stevenage</subfield><subfield code="b">The Institution of Engineering and Technology</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 521 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Healthcare technologies series</subfield><subfield code="v">50</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDSS, clinicians are assisted with the identification or elimination of the most likely potential medical causes, which can enable faster discovery of a set of appropriate diagnoses or treatment plans. Explainable AI (XAI) is a "white box" model of artificial intelligence in which the results of the solution can be understood by the users, who can see an estimate of the weighted importance of each feature on the model's predictions, and understand how the different features interact to arrive at a specific decision. This book discusses XAI-based analytics for patient-specific MDSS as well as related security and privacy issues associated with processing patient data. It provides insights into real-world scenarios of the deployment, application, management, and associated benefits of XAI in MDSS. The book outlines the frameworks for MDSS and explores the applicability, prospects, and legal implications of XAI for MDSS. Applications of XAI in MDSS such as XAI for robot-assisted surgeries, medical image segmentation, cancer diagnostics, and diabetes mellitus and heart disease prediction are explored.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imoize, Agbotiname Lucky</subfield><subfield code="0">(DE-588)1240342586</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hemanth, D. Jude</subfield><subfield code="d">1981-</subfield><subfield code="0">(DE-588)1202956807</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Do, Dinh-Thuan</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)1304396150</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sur, Samarendra Nath</subfield><subfield code="0">(DE-588)1283021706</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781839536205</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/PBHE050E</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-100-IET</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033985090</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBHE050E</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1049/PBHE050E</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-100-IET</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048609705 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:11:42Z |
indexdate | 2024-07-10T09:42:55Z |
institution | BVB |
isbn | 9781839536212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033985090 |
oclc_num | 1355302363 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-706 |
physical | 1 Online-Ressource (xx, 521 Seiten) Diagramme |
psigel | ZDB-100-IET ZDB-100-IET TUM_Paketkauf_2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The Institution of Engineering and Technology |
record_format | marc |
series2 | Healthcare technologies series |
spelling | Explainable Artificial Intelligence in medical decision support systems edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur Stevenage The Institution of Engineering and Technology 2022 1 Online-Ressource (xx, 521 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Healthcare technologies series 50 Medical decision support systems (MDSS) are computer-based programs that analyse data within a patient's healthcare records to provide questions, prompts, or reminders to assist clinicians at the point of care. Inputting a patient's data, symptoms, or current treatment regimens into an MDSS, clinicians are assisted with the identification or elimination of the most likely potential medical causes, which can enable faster discovery of a set of appropriate diagnoses or treatment plans. Explainable AI (XAI) is a "white box" model of artificial intelligence in which the results of the solution can be understood by the users, who can see an estimate of the weighted importance of each feature on the model's predictions, and understand how the different features interact to arrive at a specific decision. This book discusses XAI-based analytics for patient-specific MDSS as well as related security and privacy issues associated with processing patient data. It provides insights into real-world scenarios of the deployment, application, management, and associated benefits of XAI in MDSS. The book outlines the frameworks for MDSS and explores the applicability, prospects, and legal implications of XAI for MDSS. Applications of XAI in MDSS such as XAI for robot-assisted surgeries, medical image segmentation, cancer diagnostics, and diabetes mellitus and heart disease prediction are explored. Imoize, Agbotiname Lucky (DE-588)1240342586 edt Hemanth, D. Jude 1981- (DE-588)1202956807 edt Do, Dinh-Thuan 1980- (DE-588)1304396150 edt Sur, Samarendra Nath (DE-588)1283021706 edt Erscheint auch als Druck-Ausgabe 9781839536205 https://doi.org/10.1049/PBHE050E Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Explainable Artificial Intelligence in medical decision support systems |
title | Explainable Artificial Intelligence in medical decision support systems |
title_auth | Explainable Artificial Intelligence in medical decision support systems |
title_exact_search | Explainable Artificial Intelligence in medical decision support systems |
title_exact_search_txtP | Explainable Artificial Intelligence in medical decision support systems |
title_full | Explainable Artificial Intelligence in medical decision support systems edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur |
title_fullStr | Explainable Artificial Intelligence in medical decision support systems edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur |
title_full_unstemmed | Explainable Artificial Intelligence in medical decision support systems edited by Agbotiname Lucky Imoize, Jude Hemanth, Dinh-Thuan Do and Samarendra Nath Sur |
title_short | Explainable Artificial Intelligence in medical decision support systems |
title_sort | explainable artificial intelligence in medical decision support systems |
url | https://doi.org/10.1049/PBHE050E |
work_keys_str_mv | AT imoizeagbotinamelucky explainableartificialintelligenceinmedicaldecisionsupportsystems AT hemanthdjude explainableartificialintelligenceinmedicaldecisionsupportsystems AT dodinhthuan explainableartificialintelligenceinmedicaldecisionsupportsystems AT sursamarendranath explainableartificialintelligenceinmedicaldecisionsupportsystems |