Graph-Powered machine learning:
Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Shelter Island
Manning Publications
[2021]
|
Schlagworte: | |
Online-Zugang: | HWR01 |
Zusammenfassung: | Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks |
Beschreibung: | ISBN der Online-Ressource nicht in Vorlage genannt |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781617295645 9781638353935 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048598135 | ||
003 | DE-604 | ||
005 | 20230517 | ||
007 | cr|uuu---uuuuu | ||
008 | 221207s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781617295645 |9 978-1-61729-564-5 | ||
020 | |a 9781638353935 |c Online |9 978-1-63835-393-5 | ||
035 | |a (OCoLC)1379379729 | ||
035 | |a (DE-599)BVBBV048598135 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Negro, Alessandro |e Verfasser |4 aut | |
245 | 1 | 0 | |a Graph-Powered machine learning |c Negro, Alessandro |
264 | 1 | |a Shelter Island |b Manning Publications |c [2021] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a ISBN der Online-Ressource nicht in Vorlage genannt | ||
505 | 8 | |a 1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs | |
520 | 3 | |a Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Machine learning | |
653 | 0 | |a Machine learning / Graphic methods | |
653 | 0 | |a Graph theory | |
653 | 0 | |a Graph theory | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Machine learning / Graphic methods | |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033973727 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6736830 |l HWR01 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184641453686784 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Negro, Alessandro |
author_facet | Negro, Alessandro |
author_role | aut |
author_sort | Negro, Alessandro |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV048598135 |
classification_rvk | ST 300 |
collection | ZDB-30-PQE |
contents | 1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs |
ctrlnum | (OCoLC)1379379729 (DE-599)BVBBV048598135 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02519nmm a2200481 c 4500</leader><controlfield tag="001">BV048598135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230517 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221207s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781617295645</subfield><subfield code="9">978-1-61729-564-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781638353935</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-63835-393-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1379379729</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048598135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Negro, Alessandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graph-Powered machine learning</subfield><subfield code="c">Negro, Alessandro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Shelter Island</subfield><subfield code="b">Manning Publications</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">ISBN der Online-Ressource nicht in Vorlage genannt</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning / Graphic methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Graph theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Graph theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning / Graphic methods</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033973727</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=6736830</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048598135 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:09:13Z |
indexdate | 2024-07-10T09:42:34Z |
institution | BVB |
isbn | 9781617295645 9781638353935 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033973727 |
oclc_num | 1379379729 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource |
psigel | ZDB-30-PQE |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Manning Publications |
record_format | marc |
spelling | Negro, Alessandro Verfasser aut Graph-Powered machine learning Negro, Alessandro Shelter Island Manning Publications [2021] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier ISBN der Online-Ressource nicht in Vorlage genannt 1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Machine learning Machine learning / Graphic methods Graph theory Electronic books Maschinelles Lernen (DE-588)4193754-5 s Graphentheorie (DE-588)4113782-6 s DE-604 |
spellingShingle | Negro, Alessandro Graph-Powered machine learning 1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs Maschinelles Lernen (DE-588)4193754-5 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4113782-6 |
title | Graph-Powered machine learning |
title_auth | Graph-Powered machine learning |
title_exact_search | Graph-Powered machine learning |
title_exact_search_txtP | Graph-Powered machine learning |
title_full | Graph-Powered machine learning Negro, Alessandro |
title_fullStr | Graph-Powered machine learning Negro, Alessandro |
title_full_unstemmed | Graph-Powered machine learning Negro, Alessandro |
title_short | Graph-Powered machine learning |
title_sort | graph powered machine learning |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Maschinelles Lernen Graphentheorie |
work_keys_str_mv | AT negroalessandro graphpoweredmachinelearning |